Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T05:04:59.574Z Has data issue: false hasContentIssue false

Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for pre-harvest sprouting tolerance

Published online by Cambridge University Press:  15 February 2011

Diana V. Ceccato
Affiliation:
Germplasm Base Bank, Institute of Biological Resources, CIRN, CNIA-INTA, N. Repetto and Los Reseros s/n (B1686EYR), Hurlingham, Buenos Aires, Argentina
H. Daniel Bertero*
Affiliation:
Plant Production Department and CONICET, Faculty of Agronomy, University of Buenos Aires, Av. San Martín 4453 (C1417DSE), Buenos Aires, Argentina
Diego Batlla
Affiliation:
Plant Production Department and IFEVA, Faculty of Agronomy and CONICET, University of Buenos Aires, Av. San Martín 4453 (C1417DSE), Buenos Aires, Argentina
*
*Correspondence Fax: +54 11 4524 8025 Email: bertero@agro.uba.ar

Abstract

Pre-harvest sprouting (PHS) is a serious risk when adapting quinoa (Chenopodium quinoa) seed production to different temperate environments. Two quinoa accessions, ‘2-Want’ and ‘Chadmo’ were evaluated under field conditions in the Argentinean pampas over 2 years on five different sowing dates, to explore a range of climate conditions under which seed filling is manageable in this region. Both accessions exhibited dormancy during seed development and maturation under the conditions examined; however, dormancy expression was restricted to low temperatures in 2-Want, while seeds of Chadmo, originating from the humid island of Chiloe, southern Chile, expressed a high level of dormancy at all examined temperatures. Dormancy release was observed as a reduction in the lowest temperature permissible for seed germination, which broadened the optimal germination temperature window. Higher storage temperature increased the rate of dormancy release. The environment during seed development on the mother plant affected the levels and patterns of seed dormancy, with higher temperatures and longer photoperiods promoting dormancy. As dormancy was released before the next production period, the levels of dormancy observed in the accession would allow timely planting and uniform germination, while dormancy during seed maturation ensures the prevention of PHS. Chadmo showed deeper dormancy levels in all situations, compared with 2-Want, therefore greater PHS tolerance under various conditions in the pampas region can be expected for Chadmo, which makes this accession a better candidate to be included in adaptive breeding programmes for quinoa.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P.S., Benech-Arnold, R.L., Batlla, D. and Bradford, K.J. (2007) Modeling of seed dormancy. pp. 72112 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Oxford, UK, Blackwell Publishing.CrossRefGoogle Scholar
Argel, P.J. and Humphreys, L.R. (1983) Environmental effects on seed development and hardseededness in Stylosanthes hamata cv. Verano. I. Temperature. Australian Journal of Agricultural Research 34, 261270.CrossRefGoogle Scholar
Barghava, A., Shukla, S. and Ohri, D. (2007) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research 101, 104116.CrossRefGoogle Scholar
Batlla, D. and Benech-Arnold, R.L. (2007) Predicting changes in dormancy level in weed seed soil banks: implications for weed management. Crop Protection 26, 189197.CrossRefGoogle Scholar
Benech-Arnold, R.L. (2004) Inception, maintenance and termination of dormancy in grain crops: physiology, genetics and environmental control. pp. 169198 in Benech-Arnold, R.L.; Sánchez, R.A. (Eds) Handbook of seed physiology: Applications to agriculture. Binghamton, New York, The Haworth Press.Google Scholar
Benech-Arnold, R.L., Fenner, M. and Edwards, P.J. (1991) Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytologist 118, 339347.CrossRefGoogle ScholarPubMed
Benech-Arnold, R.L., Fenner, M. and Edwards, P.J. (1995) Influence of potassium nutrition on germinability, abscisic acid content and sensitivity of the embryo to abscisic acid in developing seeds of Sorghum bicolor (L.) Moench. New Phytologist 130, 207216.CrossRefGoogle Scholar
Benech-Arnold, R.L., Sánchez, R.A., Forcella, F., Kruk, B.C. and Ghersa, C.M. (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67, 105122.CrossRefGoogle Scholar
Bertero, H.D. (2001) Quinoa (Chenopodium quinoa Chenopodiaceae) puede llegar a ser un cultivo importante para la agricultura argentina. Boletín de la Sociedad Argentina de Botánica 36, 309314.Google Scholar
Bertero, H.D. and Benech-Arnold, R. (2000) Release from dormancy during seed development in quinoa. Variation associated to cultivar origin. In ASA (American Society of Agronomy), CSSA (Crop Science Society of America), SSSA (Soil Science Society of America) Meeting, November 2000, Minneapolis, USA.Google Scholar
Bertero, H.D. and Ruiz, R.A. (2008) Determination of seed number in sea level quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy 28, 186194.CrossRefGoogle Scholar
Bertero, H.D., de la Vega, A.J., Correa, G., Jacobsen, S.E. and Mujica, A. (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research 89, 299318.CrossRefGoogle Scholar
Christensen, S.A., Pratt, D.B., Pratt, C., Nelson, P.T., Stevens, M.R., Jellen, E.N., Coleman, C.E., Fairbanks, D.J., Bonifacio, A. and Maughan, P.J. (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetic Resources: Characterization and Utilization 5, 8295.CrossRefGoogle Scholar
Dorne, A.J. (1981) Variation in seed germination inhibition of Chenopodium bonus-henricus in relation to altitude of plant growth. Canadian Journal of Botany 59, 18931901.CrossRefGoogle Scholar
Fenner, M. (1991) The effects of the parent environment on seed germinability. Seed Science Research 1, 7584.CrossRefGoogle Scholar
Fonseca, A.E. and Sánchez, R.A. (2000) Efecto de la temperatura durante el llenado de grano sobre la germinación de semillas de girasol (Heliantus annus L.). pp. 216217 in Resúmenes de la XXIII Reunión Argentina de Fisiología Vegetal, 27–30 November, Córdoba, Argentina.Google Scholar
Gualano, N.A. and Benech-Arnold, R.L. (2009a) Predicting pre-harvest sprouting susceptibility in barley: looking for ‘sensitivity windows’ to temperature throughout grain filling in various commercial cultivars. Field Crops Research 114, 3544.CrossRefGoogle Scholar
Gualano, N.A. and Benech-Arnold, R.L. (2009b) The effect of water and nitrogen availability during grain filling on the timing of dormancy release in malting barley crops. Euphytica 168, 291301.CrossRefGoogle Scholar
Gubler, F., Millar, A.A. and Jacobsen, J.V. (2005) Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8, 183187.CrossRefGoogle ScholarPubMed
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
ISTA (International Seed Testing Association) (2005) International Rules for Seed Testing. Bassersdorf, Switzerland.Google Scholar
Jacobsen, S.-E. (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International 19, 167177.CrossRefGoogle Scholar
Jacobsen, S.-E. and Bach, A.P. (1998) The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd.). Seed Science and Technology 26, 515523.Google Scholar
Jacobsen, S.E. and Stølen, O. (1993) Quinoa – morphology, phenology and prospects for its production as a new crop in Europe. European Journal of Agronomy 2, 1929.CrossRefGoogle Scholar
Jacobsen, S.-E., Jørnsgård, B., Christiansen, J.L. and Stølen, O. (1999) Effect of harvest time, drying technique, temperature and light on the germination of quinoa (Chenopodium quinoa). Seed Science and Technology 27, 937944.Google Scholar
Jacques, R. (1968) Action de la lumière par l'intermédiaire du phytochrome sur la germination, la croissance et le développement de Chenopodium polyspermum L. Physiologie Végétale 6, 137164.Google Scholar
Johnson, D.L. and Ward, S.M. (1993) Quinoa. pp. 222227 in Janick, J.; Simon, J.E. (Eds) New crops. New York, Wiley.Google Scholar
Karssen, C.M. (1970) The light promoted germination of the seeds of Chenopodium album L. III. Effect of the photoperiod during growth and development of the plants on the dormancy of the produced seeds. Acta Botanica Neerlandica 19, 8194.CrossRefGoogle Scholar
Kermode, A. (2005) Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation 24, 319344.CrossRefGoogle Scholar
Ministério da Agricultura e Reforma Agrária (1992) Regras para análise de sementes. Secretaria Nacional de Defesa Agropecuária, Departamento Nacional de Defesa Vegetal, Coordenação de Laboratório Vegetal, Brasília.Google Scholar
Paulsen, G.M. and Auld, A.S. (2004) Preharvest sprouting of cereals. pp. 199219 in Benech-Arnold, R.L.; Sánchez, R.A. (Eds) Handbook of seed physiology: Applications to agriculture. Binghamton, New York, The Haworth Press.Google Scholar
Pourrat, Y. and Jacques, R. (1975) The influence of photoperiodic conditions received by the mother plant on morphological and physiological characteristics of Chenopodium polyspermum L. seeds. Plant Science Letters 4, 273279.CrossRefGoogle Scholar
Repo-Carrasco, R., Espinoza, C. and Jacobsen, S-E. (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International 19, 179189.CrossRefGoogle Scholar
Risi, J. and Galwey, N.W. (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Advances in Applied Biology 10, 145216.Google Scholar
Risi, J. and Galwey, N.W. (1989) Chenopodium grains of the Andes: a crop for temperate latitudes. pp. 222234 in Wickens, G.E.; Haq, N.; Day, P. (Eds) New crops for food and industry. New York, Chapman & Hall.Google Scholar
Ruales, J. and Nair, B.M. (1992) Nutritional quality of the protein of quinoa (Chenopodium quinoa Willd.) seeds. Plant Food for Human Nutrition 42, 111.CrossRefGoogle ScholarPubMed
Sánchez, R.A., Eyherabide, G. and de Miguel, L. (1981) The influence of irradiance and water deficit during fruit development on seed dormancy in Datura ferox L. Weed Research 21, 127132.CrossRefGoogle Scholar
Tapia, M., Gandarillas, H., Alandia, S., Cardozo, A., Mujica, A., Ortiz, R., Otazu, V., Rea, J., Salas, E. and Sanabria, E. (1979) La quinua y la kañiwa: cultivos andinos. Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agrícolas (IICA).Google Scholar
Vegis, A. (1964) Dormancy in higher plants. Annual Review of Plant Physiology 15, 185224.CrossRefGoogle Scholar
Vergara, A., Delatorre, J., Berti, M., Riquelme, A. and Pinto, M. (2007) Efecto de la temperatura sobre la eficiencia de respiración de semillas de tres accesiones de quinoa (Chenopodium quinoa Willd.). pp. 67 in Delatorre, J.; Salinas, A.; Olave, J.; Delfino, I. (Eds) Congreso Internacional de la Quinua, Resúmenes. Iquique, Chile.Google Scholar