Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T19:13:38.520Z Has data issue: false hasContentIssue false

Evolution of physiological dormancy multiple times in Melastomataceae from Neotropical montane vegetation

Published online by Cambridge University Press:  18 October 2011

Fernando A.O. Silveira*
Affiliation:
Departamento de Botânica/ICB/Universidade Federal de Minas Gerais, CP 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil Ecologia Evolutiva and Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
Rafaella C. Ribeiro
Affiliation:
Departamento de Botânica/ICB/Universidade Federal de Minas Gerais, CP 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
Denise M.T. Oliveira
Affiliation:
Departamento de Botânica/ICB/Universidade Federal de Minas Gerais, CP 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
G. Wilson Fernandes
Affiliation:
Ecologia Evolutiva and Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
José P. Lemos-Filho
Affiliation:
Departamento de Botânica/ICB/Universidade Federal de Minas Gerais, CP 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
*
*Correspondence Email: faosilveira@gmail.com

Abstract

We investigated seed dormancy among species of Melastomataceae from Neotropical montane vegetation of Brazil. Four out of 50 studied species had dormant seeds: Miconia corallina (Miconieae), Tibouchina cardinalis (Melastomeae), Comolia sertularia (Melastomeae) and Chaetostoma armatum (Microlicieae). For these four species, germinability of seeds collected in different years was always < 10% and the percentages of embryoless seeds and non-viable embryos were both insufficient to explain low or null germinability. This is the first unequivocal report of seed dormancy in tropical Melastomataceae. The production of seeds with permeable seed coats and fully developed, differentiated embryos indicates the occurrence of physiological dormancy. The reconstructed phylogenetic tree of the 50 species suggests that physiological dormancy evolved multiple times during the evolutionary history of Melastomataceae in this vegetation. Physiological dormancy evolved in species and populations associated with xeric microhabitats, where seeds are dispersed in unfavourable conditions for establishment. Therefore, drought-induced mortality may have been a strong selective pressure favouring the evolution of physiological dormancy in Melastomataceae. We argue that dormancy may have been independently selected in other lineages of Cerrado plants colonizing xeric microhabitats and dispersing seeds at the end of the rainy season. The contributions of our data to the understanding of seed dormancy in tropical montane vegetation are discussed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, R.J.V. and Kolbek, J. (2010) Can campo rupestre vegetation be floristically delimited based on vascular plant genera? Plant Ecology 207, 6779.Google Scholar
Angiosperm Phylogeny Website (2011) Available at http://www.mobot.org/mobot/research/apweb/welcome.html (accessed 22 September 2011).Google Scholar
Anderssen, L. and Milberg, P. (1998) Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8, 2938.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Baskin, C.C., Baskin, J.M. and Chester-Edward, C. (1999) Seed dormancy and germination in Rhexia mariana var. interior (Melastomataceae) and eco-evolutionary implications. Canadian Journal of Botany 77, 488493.Google Scholar
Baskin, J.M. and Baskin, C.C. (2005) Classification, biogeography and phylogenetic relationships of seed dormancy. pp. 517544 in Smith, R.D.; Dickie, J.B.; Linington, S.H.; Pritchard, H.W.; Probert, R.J. (Eds) Seed conservation: turning science into practice. London, Royal Botanic Gardens, Kew.Google Scholar
Chiavegatto, B. (2005) A família Melastomataceae nos campos rupestres e cerrados de altitude do Parque Estadual do Ibitipoca, Lima Duarte, MG, Brasil. MSc dissertation, Jardim Botânico do Rio de Janeiro.Google Scholar
Clausing, G. and Renner, S.S. (2001) Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. American Journal of Botany 88, 486498.Google Scholar
Coelho, F.C., Capelo, C., Neves, A.C.O., Martins, R.P. and Figueira, J.E.C. (2006) Seasonal timing of pseudoviviparous reproduction of Leiothrix (Eriocaulaceae) rupestrian species in south-eastern Brazil. Annals of Botany 98, 11891195.CrossRefGoogle ScholarPubMed
Elisson, A.M., Denslow, J.S., Loiselle, B.A. and Brenes, D.M. (1993) Seed and seedling ecology of neotropical Melastomataceae. Ecology 74, 17331749.Google Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.Google Scholar
Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387415.Google Scholar
Giulietti, A.M., Pirani, J.R. and Harley, R.M. (1997) Espinhaço range region, eastern Brazil. pp. 397404 in Davis, S.D.; Heywood, V.H.; Herrera-MacBryde, O.; Villa-Lobos, J.; Hamilton, A.C. (Eds) Centres of plant diversity: a guide and strategy for their conservation, Vol. 3. Cambridge, WWF/IUCN.Google Scholar
Gomes, V., Madeira, J.A., Fernandes, G.W. and Lemos-Filho, J.P. (2001) Seed dormancy and germination of sympatric species of Chamaecrista (Leguminosae) in a rupestrian field. International Journal of Ecology and Environmental Sciences 27, 191197.Google Scholar
Harper, J.L. (1977) Population biology of plants. London, Academic Press.Google Scholar
Hatschbach, G., Guarçoni, E.A.E., Sartori, M.A. and Ribas, O.S. (2006) Aspectos Fisionômicos da vegetação da Serra do Cabral, Minas Gerais, Brasil. Boletim do Museu Botânico Municipal 67, 133.Google Scholar
Jacobi, C.M., Carmo, F.F., Vincent, R.C. and Stehmann, J.R. (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity and Conservation 16, 21852200.Google Scholar
Jurado, E. and Moles, A. (2002) Germination deferment strategies. pp. 381388 in Nicolás, G.; Bradford, K.J.; Côme, D.; Pritchard, H.W. (Eds) The biology of seeds: Recent research advances. Wallingford, CABI Publishing.Google Scholar
Lacerda, D.R., Lemos-Filho, J.P., Goulart, M.F., Ribeiro, R.A. and Lovato, M.B. (2004) Seed-dormancy variation in natural populations of two tropical leguminous tree species: Senna multijuga (Caesalpinoideae) and Plathymenia reticulata (Mimosoideae). Seed Science Research 14, 127135.Google Scholar
Linkies, A., Graeber, K., Knight, C. and Leubner-Metzger, G. (2010) The evolution of seeds. New Phytologist 186, 817831.CrossRefGoogle ScholarPubMed
Madeira, J.A. and Fernandes, G.W. (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. Journal of Tropical Ecology 15, 463479.CrossRefGoogle Scholar
Medeiros, A.C., Loope, L.L., Conant, P. and McElvaney, S. (1997) Status, ecology and management of the invasive plant, Miconia calvescens DC (Melastomataceae) in the Hawaiian Islands. Bishop Museum Occasional Papers 48, 2336.Google Scholar
Mendes-Rodrigues, C., Araújo, F.P., Barbosa-Souza, C., Barbosa-Souza, V., Ranal, M.A., Santana, D.G. and Oliveira, P.E. (2010) Multiple dormancy and maternal effect on Miconia ferruginata (Melastomataceae) seed germination, Serra de Caldas Novas, Goiás, Brazil. Revista Brasileira de Botânica 33, 93105.Google Scholar
Mendonça, R.C., Felfili, J.M., Walter, B.M.T., Silva, M.C. Jr, Rezende, A.V., Filgueiras, T.S., Nogueira, P.E. and Fagg, C.W. (2008) Flora vascular do bioma Cerrado: checklist com 12.356 espécies. pp. 4211279 in Sano, S.M.; Almeida, S.P.; Ribeiro, J.F. (Eds) Cerrado: ecologia e flora. Brasília, Embrapa Cerrados.Google Scholar
Meyer, J.-Y. and Florence, J. (1996) Tahiti's native flora endangered by the invasion of Miconia calvescens DC (Melastomataceae). Journal of Biogeography 23, 775781.Google Scholar
Oliveira-Filho, A.T. and Ratter, J.A. (2002) Vegetation physiognomies and woody flora of the cerrado biome. pp. 91120 in Oliveira, P.S.; Marquis, R.J. (Eds) The Cerrados of Brazil: Ecology and natural history of a Neotropical savanna. New York, Columbia University Press.CrossRefGoogle Scholar
Paiva, E.A.S, Pinho, S.Z. and Oliveira, D.M.T. (2011) Large plant samples: how to process for GMA embedding? pp. 3749 in Chiarini-Garcia, H.; Melo, R.C.N. (Eds) Light microscopy: Methods and protocols. New York, Spinger/Humana Press.Google Scholar
Pereira-Diniz, S.G. (2003) Ecofisiologia da germinação de sementes de Clidemia hirta (L.) D. Don (Melastomataceae). MSc dissertation, Universidade Federal de Uberlândia.Google Scholar
Ranal, M.A. and Santana, D.G. (2006) How and why to measure the germination process? Revista Brasileira de Botânica 29, 111.Google Scholar
Ratter, J.A., Ribeiro, J.F. and Bridgewater, S. (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany 80, 223230.Google Scholar
Renner, S.S. (2004) Bayesian analysis of combined chloroplast loci, using multiple calibrations, supports the recent arrival of Melastomataceae in Africa and Madagascar. American Journal of Botany 91, 14271435.CrossRefGoogle ScholarPubMed
Renner, S.S., Clausing, G. and Meyer, K. (2001) Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. American Journal of Botany 88, 12901300.CrossRefGoogle ScholarPubMed
Salazar, A., Goldstein, G., Franco, A.C. and Miralles-Wilhelm, F. (2011) Timing of seed dispersal and dormancy, rather than persistence in soil seed-banks, control recruitment of woody plants in Neotropical savannas. Seed Science Research 21, 103116.Google Scholar
Silveira, F.A.O. (2011) Evolutionary ecophysiology of seed dormancy and germination of Melastomataceae from rupestrian fields. PhD thesis, Universidade Federal de Minas Gerais.Google Scholar
Silveira, F.A.O. and Fernandes, G.W. (2006) Effect of light, temperature and scarification on the germination of Mimosa foliolosa (Leguminosae) seeds. Seed Science and Technology 34, 585592.Google Scholar
Wagner, I. and Simons, A.M. (2009) Divergence in germination traits among arctic and alpine populations of Koenigia islandica: light requirements. Plant Ecology 204, 145153.Google Scholar
Supplementary material: File

Silveira Supplementary Material

Silveira Supplementary Material

Download Silveira Supplementary Material(File)
File 4 MB