No CrossRef data available.
Article contents
Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds
Published online by Cambridge University Press: 22 February 2007
Abstract
Correlative evidence indicates that sucrose and α-galactosyl-sucrose oligosaccharides (raffinose family oligosaccharides; RFOs) may be involved in seed longevity. Priming treatments (hydration in water or osmotic solutions followed by drying) can improve short-term seed performance but often result in reduced seed longevity. As RFOs are metabolized quickly following seed imbibition, loss of RFOs during priming could lead to more rapid deterioration in dry storage. This hypothesis was tested by measuring sucrose and oligosaccharide contents and potential longevity of primed seeds. Raffinose contents of whole lettuce (Lactuca sativa L.) seeds declined during hydration and priming and were correlated with decreased median potential viability (p50). However, this relationship was less significant when only the embryonic axes were analysed. In tomato (Lycopersicon esculentum Mill.) and impatiens (Impatiens balsamina L.) seeds, planteose was the major galactosyl-sucrose oligosaccharide and only small quantities of RFOs were present. Planteose contents declined during priming in seeds of both species, while sucrose contents increased or remained constant. Post-priming treatments that restored longevity in primed impatiens and tomato seeds were not accompanied by consistent changes in RFO or planteose contents. Our data do not rule out a role for oligosaccharides in seed longevity, but they make it unlikely that changes in oligosaccharide contents alone are responsible for the reduction in longevity due to priming or its restoration by post-priming treatments.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2001