Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T20:31:35.196Z Has data issue: false hasContentIssue false

Potential impact of global warming on seed bank, dormancy and germination of three succulent species from the Chihuahuan Desert

Published online by Cambridge University Press:  07 August 2018

José Luis Aragón-Gastélum
Affiliation:
Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Av. Agustín Melgar S/N entre Calle 20 y Juan de la Barrera. Col. Buenavista, San Francisco de Campeche, Campeche, 24039, México
Joel Flores*
Affiliation:
IPICYT/División de Ciencias Ambientales, Camino a la Presa San José No. 2055, Colonia Lomas 4a. Sección, San Luis Potosí, S.L.P., 78216, México
Enrique Jurado
Affiliation:
Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. A.P. 41, Carretera Nacional No. 85, Km 145, Linares, N.L., 67700. México
Hugo M. Ramírez-Tobías
Affiliation:
Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí. Km. 14.5 Carretera San Luis Potosí-Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, S.L.P., 78321, México
Erika Robles-Díaz
Affiliation:
Laboratorio Nacional de Variabilidad Climática, Teledetección y Evaluación de Riesgos Agrícolas, Facultad de Agronomía y Veterinaria, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. Sección, San Luis Potosí, S.L.P., 78210, México
Juan Pablo Rodas-Ortiz
Affiliation:
IPICYT/División de Ciencias Ambientales, Camino a la Presa San José No. 2055, Colonia Lomas 4a. Sección, San Luis Potosí, S.L.P., 78216, México
Laura Yáñez-Espinosa
Affiliation:
Universidad Autónoma de San Luis Potosí, Instituto de Investigación de Zonas Desérticas, Altaír No. 200, Colonia del Llano, C.P. 78377, San Luis Potosí, S.L.P., México.
*
Author for correspondence: Joel Flores, Email: joel@ipicyt.edu.mx

Abstract

We assessed inter-seasonal dynamics of seed banks, dormancy and seed germination in three endemic Chihuahuan Desert succulent species, under simulated soil warming conditions. Hexagonal open top-chambers (OTCs) were used to increase soil temperature. Seeds of Echinocactus platyacanthus (Cactaceae), Yucca filifera and Agave striata (Asparagaceae) were collected and buried within and outside OTCs. During the course of one year, at the end of each season, seed batches were exhumed to test viability and germination. Soil temperature in OTCs was higher than in control plots. Yucca filifera seeds always had high germination independently of warming treatment and season. Agave striata seeds from OTCs had higher germination than those from control plots. Agave striata exhibited low germination in fresh seeds, but high germination in spring. Seeds from this species lost viability throughout the experimental timeframe, and had no viable seeds remaining in the soil. Echinocactus platyacanthus showed high germination in fresh seeds and displayed dormancy cycling, leading to high germination in spring, low germination in summer and autumn, and high germination in winter. Germination of this species was also higher in seeds from OTCs than those from control plots. Echinocactus platyacanthus formed soil seed banks and its cycle of inter-seasonal dormancy/germination could be an efficient physiological mechanism in a climate change scenario. Under global warming projections, our results suggest that future temperatures may still fall within the three studied species’ thermal germination range. However, higher germination for A. striata and E. platyacanthus at warmer temperatures may reduce the number of seeds retained in the seed bank, and this could be interpreted as limiting their ability to spread risk over time. This is the first experimental study projecting an increase in soil temperature to assess population traits of succulent plants under a climate change scenario for American deserts.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Espino, R, Godínez-Álvarez, H and De la Torre-Almaráz, R (2014) Seed banking in the columnar cactus Stenocereus stellatus: distribution, density and longevity of seeds. Seed Science Research 24, 315320.Google Scholar
Aragón-Gastélum, JL, Flores, J, Yáñez-Espinosa, L, Badano, E, Ramírez-Tobías, H, Rodas-Ortiz, JP and González-Salvatierra, C (2014) Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora 209, 499503.Google Scholar
Aragón-Gastélum, JL, Badano, E, Yáñez-Espinosa, L, Ramírez-Tobías, H, Rodas-Ortiz, JP, González-Salvatierra, C and Flores, J (2017) Seedling survival of three endemic and threatened Mexican cacti under induced climate change. Plant Species Biology 32, 9299.Google Scholar
Archer, SR and Predick, KI (2008) Climate change and ecosystems of the southwestern United States. Rangelands 30, 2328.Google Scholar
Baker, HG (1989) Some aspects of the natural history of seed banks, pp. 921 in Leck, MA, Parker, VT and Simpson, RL (eds), Ecology of Soil Seed Banks. New York: Academic Press.Google Scholar
Baskin, C and Baskin, JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. New York: Academic Press.Google Scholar
Baskin, CC and Baskin, JM (2014) Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, second edition. San Diego, CA, USA: Academic Press.Google Scholar
Bowers, JE (2000) Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank? Journal of Arid Environments 45, 197205.Google Scholar
Bowers, JE (2005) New evidence for persistent or transient seed banks in three Sonoran Desert cacti. Southwestern Naturalist 50, 482487.Google Scholar
Cambrón-Sandoval, VH, Malda-Barrera, G, Suzán-Azpiri, H and Díaz-Salim, JF (2013) Comportamiento germinativo de semillas de Yucca filifera Chabaud con diferentes periodos de almacenamiento. Cactáceas y Suculentas Mexicanas 59, 8389.Google Scholar
Cheib, AL and Garcia, QS (2012) Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil. Seed Science Research 22, 4553.Google Scholar
Cochrane, A (2016) Can sensitivity to temperature during germination help predict global warming vulnerability? Seed Science Research 26, 1429.Google Scholar
Cochrane, A (2017) Modelling seed germination response to temperature in Eucalyptus L'Her. (Myrtaceae) species in the context of global warming. Seed Science Research 27, 99109.Google Scholar
Cochrane, JA, Hoyle, GL, Yates, C, Wood, J and Nicotra, AB (2015) Climate warming delays and decreases seedling emergence in a Mediterranean ecosystem. Oikos 124, 150160.Google Scholar
Fenner, M and Thompson, K (2005) The Ecology of Seeds. Cambridge: Cambridge University Press.Google Scholar
Flores, J and Briones, O (2001) Plant life-form and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. Journal of Arid Environments 47, 485497.Google Scholar
Flores, J, Jurado, E and Arredondo, A (2006). Effect of light on germination of seeds of Cactaceae from the Chihuahuan Desert, México. Seed Science Research 16, 149155.Google Scholar
Flores, J, González-Salvatierra, C and Jurado, E (2016) Effect of light on seed germination and seedling shape of succulent species from Mexico. Journal of Plant Ecology 9, 174179.Google Scholar
Flores, J, Jurado, E, Chapa-Vargas, L, Ceroni-Stuva, A, Dávila-Aranda, P, Galíndez, G, Gurvich, DE, León-Lobos, P, Ordóñez, C, Ortega-Baes, P, Ramírez-Bullón, P, Sandoval, A, Seal, CE, Ullian, T and Pritchard, HW (2011) Seeds photoblastism and its relationship with some plant traits in 136 cacti taxa. Environmental and Experimental Botany 71, 7988.Google Scholar
Flores, J, Pérez-Sánchez, RM and Jurado, E (2017). The combined effect of water stress and temperature on seed germination of Chihuahuan Desert species. Journal of Arid Environments 146, 9598.Google Scholar
García-Moya, E, Romero-Manzanares, A and Nobel, PS (2011) Highlights for Agave productivity. Global Change Biology Bioenergy 3, 414.Google Scholar
Grabe, DF (1970) Tetrazolium Testing Handbook for Agricultural Seeds. Contribution number 29 to the handbook on seed testing. Association of Official Seed Analysts, North Brunswick, New Jersey, USA.Google Scholar
INEGI (2002) Síntesis de Información Geográfica del Estado de San Luis Potosí. México, D.F.: Instituto Nacional de Estadística, Geografía e Informática.Google Scholar
IPCC (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, pp. 1535 in Stocker, TF, Qin, D, Plattner, GK, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds), Climate Change. Cambridge and New York: Cambridge University Press.Google Scholar
IPCC (2014) Impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, pp. 1132 in Field, CB, Barros, VR, Dokken, DJ, Mach, KJ, Mastrandrea, MD, Bilir, TE, Chatterjee, M, Ebi, KL, Estrada, YO, Genova, RC, Girma, B, Kissel, ES, Levy, AN, MacCracken, S, Mastrandrea, PR and White, LL (eds), Climate Change. Cambridge and New York: Cambridge University Press.Google Scholar
Irish, M and Irish, G (2000) Agaves, Yuccas and Related Plants: A Gardener's Guide. Portland, OR: Timber Press.Google Scholar
IUCN (2014) The IUCN Red List of Threatened Species. Available at: www.iucnredlist.org (accessed 9 January 2015).Google Scholar
Jiménez-Aguilar, A and Flores, J (2010) Effect of light on seed germination of succulent species from the southern Chihuahuan Desert: comparing germinability and relative light germination. Journal of the Professional Association for Cactus Development 12, 1219.Google Scholar
Jiménez-Sierra, C, Mandujano, MC and Eguiarte, LE (2007) Are populations of the candy barrel cactus (Echinocactus platyacanthus) in the desert of Tehuacán, Mexico at risk? Population projection matrix and life table response analysis. Biological Conservation 135, 278292.Google Scholar
Jurado, E and Flores, J (2005) Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science 16, 559564.Google Scholar
Long, RL, Gorecki, MJ, Renton, M, Scott, JK, Colville, L, Goggin, DE, Commander, LE, Westcott, DA, Cherry, H and Finch-Savage, WE (2015). The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews 90, 3159.Google Scholar
Mandujano, MC, Montanā, C, Méndez, I and Golubov, J (1998). The relative contributions of sexual reproduction and clonal propagation in Opuntia rastrera from two habitats in the Chihuahuan Desert. Journal of Ecology 86, 911921.Google Scholar
Marion, GM (1996) Temperature enhancement experiments, pp. 1722 in Molau, U and Mølgaard, P (eds), International Tundra Experiment Manual. Copenhagen: Danish Polar Center.Google Scholar
Martorell, C, Montañana, DM, Ureta, C and Mandujano, MC (2015) Assessing the importance of multiple threats to an endangered globose cactus in Mexico: cattle grazing, looting and climate change. Biological Conservation 181, 7381.Google Scholar
Matimati, I, Musil, CF, Raitt, L and February, E (2012) Non rainfall moisture interception by dwarf succulents and their relative abundance in an inland arid South African ecosystem. Ecohydrology 6, 818825.Google Scholar
Matuda, E and Piña Luján, I (1980). Las plantas mexicanas del género Yucca. Serie Fernando de Alva Ixtlilxochitl, Collecion miscelánea estado de Mexico, Toluca, Mexico.Google Scholar
Medina-García, G, Díaz, PG, Loredo, OC, Serrano, AV and Cano, GMA (2005) Estadísticas climatológicas básicas del estado de San Luis Potosí. Vol. II. Centro de Investigación Regional Noreste Campo Experimental San Luis, México.Google Scholar
Montiel, S and Montaña, C (2003) Seed bank dynamics of the desert cactus Opuntia rastrera in two habitats from the Chihuahuan Desert. Plant Ecology 166, 241248.Google Scholar
Musil, CF, Schmeidel, U and Midgley, GF (2005) Lethal effects of experimental warming approximating a future climate scenario on southern African quartz-field succulents: a pilot study. New Phytologist 165, 539547.Google Scholar
Musil, CF, Van Heerden, PDR, Cilliers, CD and Schmeidel, U (2009) Mild experimental climate warming induces metabolic impairment and massive mortalities in southern African quartz field succulents. Environmental and Experimental Botany 66, 7987.Google Scholar
Nobel, PS (2010) Desert wisdom/agaves and cacti: CO2, water, climate change. Bloomington, IN: iUniverse Inc.Google Scholar
Ooi, MK (2012) Seed bank persistence and climate change. Seed Science Research 22 (S1), S53S60.Google Scholar
Ooi, MK, Auld, TD and Denham, AJ (2009) Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Global Change Biology 15, 23752386.Google Scholar
Ooi, MK, Auld, TD and Denham, AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant and Soil 353, 289303.Google Scholar
Ordóñez-Salanueva, CA, Seal, CE, Pritchard, HW, Orozco-Segovia, A, Canales-Martínez, M and Flores-Ortiz, CM (2015) Cardinal temperatures and thermal time in Polaskia Backeb (Cactaceae) species: effect of projected soil temperature increase and nurse interaction on germination timing. Journal of Arid Environments 115, 7380.Google Scholar
Ordóñez-Salanueva, CA, Orozco-Segovia, A, Canales-Martínez, M, Seal, CE, Pritchard, HW and Flores-Ortiz, CM (2017) Ecological longevity of Polaskia chende (Cactaceae) seeds in the soil seed bank, seedling emergence and survival. Plant Biology 19, 973982.Google Scholar
Ortega-Baes, P and Godínez-Álvarez, H (2006) Global diversity and conservation priorities in the Cactaceae. Biodiversity and Conservation 15, 817827.Google Scholar
Pérez-Sánchez, RM, Flores, J, Jurado, E and González-Salvatierra, C (2015). Growth and ecophysiology of succulent seedlings under the protection of nurse plants in the Southern Chihuahuan Desert. Ecosphere, 6(3), 36. doi.org/10.1890/ES14-00408.1Google Scholar
Pérez-Sánchez, RM, Jurado, E, Chapa-Vargas, L and Flores, J (2011) Seed germination of Southern Chihuahuan Desert plants in response to elevated temperatures. Journal of Arid Environments 75, 978980.Google Scholar
Ramírez-Tobías, HM, Peña-Valdivia, CB, Reyes-Agüero, JA, Sánchez-Urdaneta, AB and Valle, GS (2012) Seed germination temperatures of eight Mexican Agave species with economic importance. Plant Species Biology 27, 124137.Google Scholar
Ramírez-Tobías, HM, Peña-Valdivia, CB, Trejo, C and Vaquera, H (2014) Seed germination of Agave species as influenced by substrate water potential. Biological Research 47, 11. doi: 10.1186/0717-6287-47-11Google Scholar
Reyes-Agüero, JA, Aguirre, JR and Peña-Valdivia, CB (2000) Biología y aprovechamiento de Agave lechuguilla Torrey. Boletín de la Sociedad Botánica de México 67, 7588.Google Scholar
Rojas-Aréchiga, M and Mandujano-Sánchez, MC (2017). Latencia secundaria en especies de la tribu Cacteae (Cactaceae). Polibotánica 44, 137146.Google Scholar
Rojas-Aréchiga, M and Vázquez-Yanes, C (2000) Cactus seed germination: a review. Journal of Arid Environments 44, 85104.Google Scholar
Rzedowski, J (1991) Diversidad y orígenes de la flora fanerogámica de México. Acta Botánica Mexicana 14, 321.Google Scholar
Seal, C, Daws, M, Flores, J, Ortega-Baes, P, Galíndez, G, León, P, Sandoval, A, Ceroni- Stuva, A, Ramírez-Bullón, N, Dávila, P, Ordoñez-Salanueva, CA, Yáñez-Espinosa, L, Ulian, T, Amosso, C, Zubani, L, Torres-Bilbao, A and Pritchard, H (2017) Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Global Change Biology 23, 53095317.Google Scholar
SEMARNAT (2010) Norma Oficial Mexicana NOM-059-ECOL-2010. Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres. Categorías de Riesgo y Especificaciones para su Inclusión, Exclusión o Cambio. Lista de Especies en Riesgo Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, México DF.Google Scholar
Tejeda-Martínez, A, Conde-Álvarez, C and Valencia-Treviso, LE (2008) Climate change scenarios of extreme temperatures and atmospheric humidity for México. Atmósfera 21, 357372.Google Scholar