Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:02:51.233Z Has data issue: false hasContentIssue false

Three levels of simple morphophysiological dormancy in seeds of Ilex (Aquifoliaceae) species from Argentina

Published online by Cambridge University Press:  25 May 2018

Guadalupe Galíndez
Affiliation:
Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET, Av. Bolivia 5150, Salta 4400, Argentina
Diana Ceccato
Affiliation:
Agencia de Extensión Rural San Julián Estación Experimental Santa Cruz, Instituto Nacional de Tecnología Agropecuaria (EEA Santa Cruz-INTA), Av. San Martín 1280, San Julián 9310, Santa Cruz, Argentina
Rosana Bubillo
Affiliation:
Estación Experimental Cerro Azul, Instituto Nacional de Tecnología Agropecuaria (EEA Cerro Azul-INTA), Ruta Nacional 14 Km 836, Cerro Azul 3313, Misiones, Argentina
Lucía Lindow-López
Affiliation:
Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET, Av. Bolivia 5150, Salta 4400, Argentina
Gisela Malagrina
Affiliation:
Banco Base de Germoplasma, Instituto de Recursos Biológicos, CIRN-INTA, De los Reseros y N. Repetto s/n, Hurlingham 1686, Buenos Aires, Argentina
Pablo Ortega-Baes
Affiliation:
Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET, Av. Bolivia 5150, Salta 4400, Argentina
Carol C. Baskin*
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY, USA, and Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
*
Author for correspondence: Carol C. Baskin, Email: ccbask0@uky.edu

Abstract

As a contribution to understanding the world biogeography of seed dormancy in the cosmopolitan genus Ilex, we studied seeds of I. argentina, I. brasiliensis, I. brevicuspis, I. dumosa, I. paraguariensis and I. theezans from the subtropical region of Argentina. We hypothesized that seeds of these species have non-deep simple morphophysiological dormancy (MPD). Effects of temperature, cold stratification and gibberellic acid (GA3) on seed germination and embryo growth were tested. Regardless of incubation temperature, little or no germination occurred for any species until ≥6 weeks. There was an up to 3-fold increase in embryo length to seed length (E:S) ratio before seeds germinated, and embryos grew only during warm-stratifying conditions. Seeds of I. brasiliensis, I. brevicuspis and I. theezans had non-deep simple MPD and germinated to ≥80% after 12, 24 and 16 weeks, respectively. Cold stratification increased germination of I. brasiliensis and I. brevicuspis, and GA3 increased the rate but not final germination percentage of I. brasiliensis and I. theezans. Fresh seeds of I. dumosa required 40 weeks of warm stratification to germinate to 53%, while those after-ripened for 2 months germinated to 81% after 30 weeks; this species has intermediate simple MPD. Seeds of I. argentina and I. paraguariensis germinated to 15 and 21%, respectively, after 40 weeks of warm stratification and did not after-ripen or respond to GA3; these seeds have deep simple MPD. This is the first report of intermediate and deep simple MPD that is broken by warm stratification, thereby increasing our knowledge of seed dormancy in Ilex and in subtropical regions.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, LV and Thornton, NC (1947) Germination and sex population studies of Ilex opaca Ait. Contribution from the Boyce Thompson Institute 14, 405410.Google Scholar
Baskin, CC and Baskin, JM (1994). Deep complex morphophysiological dormancy in seeds of the mesic woodland herb Delphinium tricorne (Ranunculaceae). International Journal of Plant Sciences 155, 738743.Google Scholar
Baskin, CC and Baskin, JM (2014) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination (2nd edn). San Diego: Elsevier/Academic Press.Google Scholar
Baskin, CC et al. (2005) Germination of drupelets in multi-seeded drupes of the shrub Leptecophylla tameiameiae (Ericaceae) from Hawaii: a case for deep physiological dormancy broken by high temperatures. Seed Science Research 15, 349356.CrossRefGoogle Scholar
Baskin, JM and Baskin, CC (1989) Seed germination ecophysiology of Jeffersonia diphylla, a perennial herb of mesic deciduous forests. American Journal of Botany 76, 10731080.Google Scholar
Baskin, JM and Baskin, CC (1990) Germination ecophysiology of seeds of the winter annual Chaerophyllum tainturieri: a new type of morphophysiological dormancy. Journal of Ecology 78, 9931004.Google Scholar
Baskin, JM, Baskin, CC and McCann, MT (1988) A contribution to the germination ecology of Floerkea proserpinacoides (Limnanthaceae). Botanical Gazette 149, 427431.Google Scholar
Cabrera, AL (1971) Fitogeografía de la república Argentina. Boletín de la Sociedad Argentina de Botánica 14, 142.Google Scholar
Chien, CT et al. (2011) Nondeep simple morphophysiological dormancy in seeds of Ilex maximowicziana from northern (subtropical) and southern (tropical) Taiwan. Ecological Research 26, 163171.Google Scholar
Cuénoud, P et al. (2000). Molecular phylogeny and biogeography of the genus Ilex L. (Aquifoliaceae). Annals of Botany 85, 111122.Google Scholar
Cuquel, FL, Carvalho, MLM and Chama, HMCP (1994) Avaliação de métodos de estratificação para a quebra de dormência de sementes de erva-mate. Scientia Agricola 51, 415421.Google Scholar
de Mejía, EG et al. (2010). Yerba mate tea (Ilex paraguariensis): phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation. Journal of Functional Foods 2, 2334.CrossRefGoogle Scholar
Di Rienzo, JA et al. (2014) InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at: http://www.infostat.com.arGoogle Scholar
Di Rienzo, JA, Guzmán, AW and Casanoves, F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological and Environmental Statistics 7, 129142.Google Scholar
Dolce, NR, Mroginski, LA and Rey, HY (2010) Endosperm and endocarp effects on the Ilex paraguariensis A. St.-Hil. (Aquifoliaceae) seed germination. Seed Science and Technology 38, 441448.Google Scholar
Dolce, NR, Mroginski, LA and Rey, HY (2011) Enhanced seed germination of Ilex dumosa R. (Aquifoliaceae) through in vitro culture of cut pyrenes. HortScience 46, 278281.Google Scholar
Dolce, NR et al. (2015) Sowing pyrenes under aseptic conditions enhances seed germination of Ilex brasiliensis, I. pseudoboxus and I. theezans (Aquifoliaceae). Seed Science and Technology 43, 273277.CrossRefGoogle Scholar
Filip, R et al. (2001) Phenolic compounds in seven South American Ilex species. Fitoterapia 72, 774778.Google Scholar
Fontana, HP, Prat Krikum, SD and Belingheri, LD (1990). Estudios sobre la germinación y conservación de semillas de yerba mate (Ilex paraguariensis St. Hil.). Informe Técnico 52 EEA INTA Cerro Azul, Misiones, Argentina.Google Scholar
Fox, J and Weisberg, S (2011) An {R} companion to applied regression. Thousand Oaks, California, USA: Sage.Google Scholar
Giberti, GC (1995) Florística, sistemática y potencialidades con relación a un banco de germoplasma para la yerba mate. In Winge, H, Ferreira, A, Mariath, J, Tarasconi, L (eds), Erva-Mate: Biologia e Cultura no Cono Sul. University Federal do Rio Grande do Sul, Brasil, pp. 303312Google Scholar
Giberti, GC (2008) Aquifoliaceae, pp. 1143–1146 in Zuloaga, FO, Morrone, O and Belgrano, MJ (eds), Catálogo de las Plantas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay), vol. 2, Dicotyledoneae: Acanthaceae – Fabaceae (Abarema – Schizolobium). Monographs of Systematic Botany Missouri Botanical Garden 107, 11431146.Google Scholar
Gottlieb, AM, Giberti, GC and Poggio, L (2005) Molecular analyses of the genus Ilex (Aquifoliaceae) in southern South America, evidence from AFLP and ITS sequence data. American Journal of Botany 92, 352369.Google Scholar
Hu, CY (1975) In vitro culture of rudimentary embryos of eleven Ilex species. Journal of the American Society for Horticultural Science 100, 221225.Google Scholar
Hughes, RH (1964) Some observations on germination of gallberry seed. U.S. Forest Service Research Note SE-17, 13.Google Scholar
ISTA (2008) International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland.Google Scholar
Ives, SA (1923) Maturation and germination of seeds of Ilex opaca. Botanical Gazette 76, 6077.Google Scholar
Keller, HA and Giberti, GC (2011) Primer registro para la flora Argentina de Ilex affinis (Aquifoliaceae), sustituto de la ‘yerba mate’. Boletín de la Sociedad Argentina de Botánica 46, 187194.Google Scholar
Lenth, RV (2016) Least-squares means: the R Package lsmeans. Journal of Statistical Software 69, 133.Google Scholar
Loizeau, P-A et al. (2005) Towards an understanding of the distribution of Ilex L. (Aquifoliaceae) on a world-wide scale. Biologiske Skrifter 55, 501520.Google Scholar
Martin, AC (1946). The comparative internal morphology of seeds. American Midland Naturalist 36, 513660.CrossRefGoogle Scholar
Nikolaeva, MG (1969). Physiology of deep dormancy in seeds. Leningrad: Izdatel'stvo Nauka. (Translated from Russian by Shapiro, Z, NSF, Washington, DC.).Google Scholar
Nikolaeva, MG (1977) Factors controlling the seed dormancy pattern. In Khan, AA (ed), The Physiology and Biochemistry of Seed Dormancy and Germination. Amsterdam, North-Holland, pp. 5174Google Scholar
Nikolaeva, MG, Rasumova, MV and Gladkova, VN (1985) Reference Book on Dormant Seed Germination, ed. Danilova, MF Leningrad: Nauka Publishers.Google Scholar
Ng, FSP (1991) Manual of Forest Fruits, Seeds and Seedlings, vol. 1. Kuala Lumpur: Forest Research Institute of Malaysia.Google Scholar
R Core Team (2016) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at: https://www.r-project.org/ (accessed September 2016).Google Scholar
Sansberro, PA et al. (1998) In vitro culture of rudimentary embryos of Ilex paraguariensis: responses to exogenous cytokinins. Journal of Plant Growth Regulation 17, 101105.Google Scholar
Sansberro, PA, Rey, HY and Mroginski, LA (2001) In vitro culture of zygotic embryos of Ilex species. HortScience 36, 351352.Google Scholar
Schinella, G, Fantinelli, JC and Mosca, SM (2005) Cardioprotective effect of Ilex paraguariensis extract: evidence for a nitric oxide-dependent mechanism. Clinical Nutrition 24, 360366.CrossRefGoogle ScholarPubMed
Tezuka, T et al. (2013) Factors affecting seed germination of Ilex latifolia and I. rotunda. HortScience 48, 352356.Google Scholar
Tsang, AC and Corlett, RT (2005) Reproductive biology of the Ilex species (Aquifoliaceae) in Hong Kong, China. Botany 83, 16451654.Google Scholar
Walck, JL, Baskin, CC and Baskin, JM (1999) Seeds of Thalictrum mirable (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canadian Journal of Botany 77, 17691776.Google Scholar
Wendling, I et al. (2013) Vegetative propagation of adult Ilex paraguariensis trees through epicormic shoots. Acta Scientiarum Agronomy 35, 117125.CrossRefGoogle Scholar
Young, JA and Young, CG (1992). Seeds of Woody Plants in North America, revised and enlarged edition. Portland: Dioscorides Press.Google Scholar