Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T14:00:31.718Z Has data issue: false hasContentIssue false

Aversive Priming: Cognitive Processing of Threatening Stimuli is Facilitated by Aversive Primes

Published online by Cambridge University Press:  10 January 2013

Evelio Huertas*
Affiliation:
Universidad Complutense (Spain)
*
Correspondence concerning this article should be addressed to Evelio Huertas. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas. 28223 Pozuelo de Alarcón – Madrid (Spain). E-mail: ehuertas@psi.ucm.es

Abstract

It would be reasonable to expect that our previous experience regarding a stimulus that predicts harm would make the subsequent identification of that stimulus easier when harm happens again. Forty-eight volunteers were submitted to both phases of this sequence of events: learning of the predictive relationship and later priming. A face with neutral expression (CS+) was paired with a moderately aversive electric shock and another (CS−) with a neutral tone. Subsequently, these two faces, as well as other known and new faces, were presented for familiarity judgments. Both the CS+ and the CS− faces were preceded by an aversive stimulus (aversive prime) in one occasion and by a neutral stimulus (neutral prime) in another. The familiarity judgment regarding the CS+ was faster after the aversive prime than after the neutral prime, but there was no difference regarding the CS−. The differential effect of the aversive prime over the CS+ and the CS− showed a significant but small correlation with the differential skin conductance response to CS+ and CS− (signal learning), and with the differential evaluation of those stimuli in terms of like-dislike (evaluative learning). The scope of these results, as well as the usefulness of this methodological model, is discussed.

Cabe esperar que nuestra experiencia previa respecto a un estímulo predictor de un daño facilite la identificación posterior de ese estímulo cuando el daño ocurre de nuevo. Se sometió a 48 voluntarios a ambas fases de esta secuencia de hechos: aprendizaje de la relación predictiva y facilitación posterior. Se emparejó una cara con expresión neutra (EC+) con una descarga eléctrica moderadamente aversiva y otra (EC-) con un tono neutro. Posteriormente se sometieron esas dos caras, mezcladas con otras antiguas y nuevas, a juicios de familiaridad. Tanto la cara EC+ como la cara EC- iban precedidas de un estímulo aversivo (prime aversivo) en una ocasión y de un estimulo neutro (prime neutro) en otra. El juicio de familiaridad respecto al EC+ fue más rápido tras el prime aversivo que tras el prime neutro, pero no hubo diferencia en el caso del EC-. El efecto diferencial del prime aversivo sobre el EC+ y el EC- mostró una correlación significativa, aunque pequeña, con la respuesta de conductancia de la piel diferencial al EC+ y al EC- (aprendizaje de señal), y con la evaluación diferencial en términos de agrado-desagrado de uno y otro estímulo (aprendizaje evaluativo). Se discute el alcance de estos resultados y la utilidad del modelo metodológico.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 124. http://dx.doi.org/10.1037/0033-2909.133.1.1CrossRefGoogle ScholarPubMed
Baeyens, F., Eelen, P., van den Bergh, O., & Crombez, G. (1989). Acquired affective-evaluative value: Conservative but not unchangeable. Behavior Research and Therapy, 27, 279287. http://dx.doi.org/10.1016/0005-7967(89)90047-8CrossRefGoogle Scholar
Belzung, C., & Philippot, P. (2007). Anxiety from a phylogenetic perspective: Is there a qualitative difference between human and animal anxiety? Neural Plasticity, Article ID 59676, 17 pages. http://dx.doi.org/10.1155/2007/59676Google Scholar
Blaney, P. H. (1986). Affect and memory: A review. Psychological Bulletin, 99, 229246. http://dx.doi.org/10.1037/0033-2909.99.2.229CrossRefGoogle ScholarPubMed
Bower, G. H. (1981). Mood and memory. American Psychologist, 36, 129148. http://dx.doi.org/10.1037/0003-066X.36.2.129CrossRefGoogle ScholarPubMed
Bremner, J. D., Innis, R. B., Ng, C. K., Staib, L. H., Salomon, R. M., Bronen, R. A., … Charney, M. D. (1997). Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Archives of General Psychiatry, 54, 246254. http://dx.doi.org/10.1001/archpsyc.1997.01830150070011CrossRefGoogle ScholarPubMed
Brewin, C., Gregory, J., Lipton, M., & Burgess, N. (2010) Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117, 210232. http://dx.doi.org/10.1037/a0018113CrossRefGoogle ScholarPubMed
Cahill, L., Gorski, L., & Le, K., (2003). Enhanced human memory consolidation with post-learning stress: Interaction with the degree of arousal at encoding. Learning and Memory. 10, 270274. http://dx.doi.org/10.1101/lm.62403CrossRefGoogle ScholarPubMed
Cahill, L., Haier, R. J., Fallon, J., Alkire, M., Tang, C., Keator, D., … McGaugh, J. L. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Sciences of the United States of America, 93, 80168021. http://dx.doi.org/10.1073/pnas.93.15.8016CrossRefGoogle ScholarPubMed
Carter, M. D., Hough, M. S., Stuart, A., & Rastatter, M. P. (2011). The effects of inter-stimulus interval and prime modality in a semantic priming task. Aphasiology, 25, 761773. http://dx.doi.org/10.1080/02687038.2010.539697CrossRefGoogle Scholar
Dewitte, M., De Houwer, J., Koster, E. H. W., & Buysse, A. (2007). What's in a name. Attachment-related attentional bias. Emotion, 7, 535545. http://dx.doi.org/10.1037/1528-3542.7.3.535CrossRefGoogle Scholar
Dickinson, A. (1980). Contemporary animal learning theory. Cambridge, England: Cambridge University Press.Google Scholar
Domes, G., Heinrichs, M., Rimmele, U., Reichwald, U., & Hautzinger, M. (2004). Acute stress impairs recognition for positive words—association with stress induced cortisol secretion. Stress, 7, 173181. http://dx.doi.org/10.1080/10253890412331273213CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1976) Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Elzinga, B. M., & Bremner, J. D. (2002). Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? Journal of Affective Disorders, 70, 117. http://dx.doi.org/10.1016/S0165-0327(01)00351-2CrossRefGoogle ScholarPubMed
Freeman, D., & Garety, P.A. (2003) Connecting neurosis and psychosis: The direct influence of emotion on delusions and hallucinations. Behavior Research and Therapy, 41, 923947. http://dx.doi.org/10.1016/S0005-7967(02)00104-3CrossRefGoogle ScholarPubMed
Hofmann, W., De Houwer, J., Perugini, M., Baeyens, F., & Crombez, G. (2010). Evaluative conditioning in humans: A meta-analysis. Psychological Bulletin, 136, 390421. http://dx.doi.org/10.1037/a0018916CrossRefGoogle ScholarPubMed
Hopwood, S., & Bryant, R. A. (2006). Intrusive experiences and hyperarousal in acute stress disorder. British Journal of Clinical Psychology, 45, 137142. http://dx.doi.org/10.1348/014466505X66052CrossRefGoogle ScholarPubMed
Huertas-Rodríguez, E. (1980). Reversibilidad de la relación est ímulo-respuesta en condicionamiento clásico [Reversibility of the stimulus-response relationship in classical conditioning]. Revista de Psicolog ía General y Aplicada, 35, 245253.Google Scholar
Huertas-Rodríguez, E. (1985). Recuperación de un EC sometido a efectos opuestos de asociación E-E y E-R [Retrieval of a CS submitted to opposite effects of S-S and S-R associations]. Revista de Psicolog ía General y Aplicada, 40, 971985.Google Scholar
Huertas-Rodríguez, E. (1991). Cognitive techniques in human classical conditioning. Journal of Psychophysiology, 5, 510.Google Scholar
Huertas, E., Bühler, K. M., Echeverry-Alzate, V., Giménez, T., & López-Moreno, J. A. (2012). C957T polymorphism of the dopamine D2 receptor gene is associated with motor learning and heart rate. Genes, Brain and Behavior, 11, 677683. http://dx.doi.org/10.1111/j.1601-183X.2012.00793.xCrossRefGoogle ScholarPubMed
Huertas, E., Ponce, G., Koeneke, M. A., Poch, C., España-Serrano, L., Palomo, T., … Hoenicka, J. (2010). The D2 dopamine receptor gene variant C957T affects human fear conditioning and aversive priming. Genes, Brain and Behavior, 9, 103109. http://dx.doi.org/10.1111/j.1601-183X.2009.00543.xCrossRefGoogle ScholarPubMed
Jensen, C. F., Keller, T. W., Peskind, E. R., McFall, M. E., Veith, R. C., Martin, D., … Raskind, M. A. (1997). Behavioral and neuroendocrine responses to sodium lactate infusion in subjects with posttraumatic stress disorder. The American Journal of Psychiatry, 154, 266268.Google ScholarPubMed
Joormann, J., & D'Avanzato, C. (2010). Emotion regulation in depression: Examining the role of cognitive processes. Cognition and Emotion, 24, 913939. http://dx.doi.org/10.1080/02699931003784939CrossRefGoogle Scholar
Karabanov, A., Cervenka, S., De Manzano, O., Forssberg, H., Farde, L., & Ullen, F. (2010). Dopamine D2 receptor density in the limbic striatum is related to implicit but not explicit movement sequence learning. Proceedings of the National Academy of Sciences, 107, 75747579. http://dx.doi.org/10.1073/pnas.0911805107CrossRefGoogle Scholar
Kellner, M., Levengood, R., Yehuda, R., & Wiedemann, K. (1998). Provocation of a posttraumatic flashback by cholecystokinin tetrapeptide? American Journal of Psychiatry, 155, 1299.CrossRefGoogle ScholarPubMed
Klauer, K. C., & Musch, J. (2003). Affective priming: Findings and theories. In Musch, J. & Klauer, K. C. (Eds.), The psychology of evaluation: Affective processes in cognition and emotion (pp. 751). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Kuhlmann, S., Kirschbaum, C., & Wolf, O. T. (2005). Effects of oral cortisol treatment in healthy young women on memory retrieval of negative and neutral words. Neurobiology of Learning and Memory, 83, 158162. http://dx.doi.org/10.1016/j.nlm.2004.09.001CrossRefGoogle ScholarPubMed
Levey, A. B., & Martin, I. (1975). Classical conditioning of human “evaluative” responses. Behavior Research and Therapy, 13, 221226. http://dx.doi.org/10.1016/0005-7967(75)90026-1CrossRefGoogle ScholarPubMed
Lonsdorf, T. B., & Kalisch, R. (2011). A review on experimental and clinical genetic associations studies on fear conditioning, extinction and cognitive-behavioral treatment. Translational Psychiatry, 1, 41. http://dx.doi.org/10.1038/tp.2011.36CrossRefGoogle ScholarPubMed
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252271. http://dx.doi.org/10.1037//0033-295X.87.3.252CrossRefGoogle Scholar
Marks, I. M. (1987). Fears, phobias and rituals. Oxford: Oxford University Press.Google Scholar
Nixon, R. D. V., & Bryant, R. A. (2005). Induced arousal and reexperiencing in acute stress disorder. Journal of Anxiety Disorders, 19, 587594. http://dx.doi.org/10.1016/j.janxdis.2004.05.001CrossRefGoogle ScholarPubMed
Pezze, M. A., & Feldon, J. (2004). Mesolimbic dopaminergic pathways in fear conditioning. Progress in neurobiology, 74, 301320. http://dx.doi.org/10.1016/j.pneurobio.2004.09.004CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187. http://dx.doi.org/10.1016/j.neuron.2005.09.025CrossRefGoogle ScholarPubMed
Pitman, R. K. (1989). Posttraumatic stress disorder, hormones and memory. Biological Psychiatry, 26, 221223. http://dx.doi.org/10.1016/0006-3223(89)90033-4CrossRefGoogle ScholarPubMed
Rainey, J. M., Aleem, A., Ortiz, A., Yeragani, V., Pohl, R., & Berchou, R. (1987). A laboratory procedure for the induction of flashbacks. American Journal of Psychiatry, 144, 13171319.Google ScholarPubMed
Robinson, O. J., Letkiewicz, A. M., Overstreet, C., Ernst, M., & Grillon, C. (2011). The effect of induced anxiety on cognition: Threat of shock enhances aversive processing in healthy individuals. Cognitive, Affective, & Behavioral Neuroscience, 11, 217227. http://dx.doi.org/10.3758/s13415-011-0030-5CrossRefGoogle ScholarPubMed
Roozendaal, B., & McGaugh, J. L. (2011). Memory modulation. Behavioral Neuroscience, 125, 797824. http://dx.doi.org/10.1037/a0026187CrossRefGoogle ScholarPubMed
Sinha, R. (2009). Modeling stress and drug craving in the laboratory: Implications for addiction treatment development. Addiction Biology, 14, 8498. http://dx.doi.org/10.1111/j.1369-1600.2008.00134.xCrossRefGoogle ScholarPubMed
Sinha, R., Shaham, Y., & Heilig, M. (2011). Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology, 218, 6982. http://dx.doi.org/10.1007/s00213-011-2263-yCrossRefGoogle ScholarPubMed
Spruyt, A., De Houwer, J., Hermans, D., & Eelen, P. (2007). Affective priming of nonaffective semantic categorization responses. Experimental Psychology, 54, 4453. http://dx.doi.org/10.1027/1618-3169.54.1.44CrossRefGoogle ScholarPubMed
Southwick, S. M., Krystal, J. H., Morgan, C. A., Johnson, D., Nagy, L. M., Nicolaou, A., … Charney, D. S. (1993). Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry, 50, 266274. http://dx.doi.org/10.1001/archpsyc.1993.01820160036003CrossRefGoogle ScholarPubMed
Tollenaar, M. S., Elzinga, B. M., Spinhoven, P., & Everaerd, W. A. (2008). The effects of cortisol increase on long-term memory retrieval during and after acute psychosocial stress. Acta Psychologica, 127, 542552. http://dx.doi.org/10.1016/j.actpsy.2007.10.007CrossRefGoogle ScholarPubMed
Wagner, A. D., Gabrieli, J. D. E., & Verfaellie, M. (1997). Dissociations between familiarity processes in explicit recognition and implicit perceptual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 305323. http://dx.doi.org/10.1037/0278-7393.23.2.305Google ScholarPubMed
Wiese, H. (2011). The structure of semantic person memory: Evidence from semantic priming in person recognition, British Journal of Psychology, 102, 899914. http://dx.doi.org/10.1111/j.2044-8295.2011.02042.xCrossRefGoogle ScholarPubMed
Witvliet, C. V. (1997). Traumatic intrusive imagery as an emotional memory phenomenon: A review of research and explanatory information processing theories. Clinical Psychology Review, 17, 509536. http://dx.doi.org/10.1016/S0272-7358(97)00025-1Google Scholar
Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Research, 1293, 142154. http://dx.doi.org/10.1016/j.brainres.2009.04.013CrossRefGoogle ScholarPubMed
Wolf, C., & Linden, D. E. (2012). Biological pathways to adaptability – interactions between genome, epigenome, nervous system and environment for adaptive behavior. Genes, Brain and Behavior, 11, 328. http://dx.doi.org/10.1111/j.1601-183X.2011.00752.xCrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2001). Components of episodic memory: The contribution of recollection and familiarity. Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 13631374. http://dx.doi.org/10.1098/rstb.2001.0939CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441517. http://dx.doi.org/10.1006/jmla.2002.2864CrossRefGoogle Scholar