Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T23:02:35.280Z Has data issue: false hasContentIssue false

One-Dimensional and Multi-Dimensional Studies of the Exocentric Distance Estimates in Frontoparallel Plane, Virtual Space, and Outdoor Open Field

Published online by Cambridge University Press:  10 April 2014

J. Antonio Aznar-Casanova*
Affiliation:
Universidad de Barcelona, Spain
Elton H. Matsushima
Affiliation:
Universidade Federal Fluminense, Brazil
Nilton P. Ribeiro-Filho
Affiliation:
Universidade Federal do Rio de Janeiro, Brazil
José A. Da Silva
Affiliation:
Universidade de São Paulo, Brazil
*
Correspondence concerning this article should be addressed to J. Antonio Aznar-Casanova, Department of Basic Psychology, Faculty of Psychology, University of Barcelona, Passeig Vall d'Hebron, 171, 08035-Barcelona (SPAIN). Tel: +34 93 312 51 45. Fax: +34 93 402 13 63. e-mail: jaznar2@ub.edu

Abstract

The aim of this study is twofold: on the one hand, to determine how visual space, as assessed by exocentric distance estimates, is related to physical space. On the other hand, to determine the structure of visual space as assessed by exocentric distance estimates. Visual space was measured in three environments: (a) points located in a 2-D frontoparallel plane, covering a range of distances of 20 cm; (b) stakes placed in a 3-D virtual space (range ≈ 330 mm); and (c) stakes in a 3-D outdoors open field (range = 45 m). Observers made matching judgments of distances between all possible pairs of stimuli, obtained from 16 stimuli (in a regular squared 4 × 4 matrix). Two parameters from Stevens' power law informed us about the distortion of visual space: its exponent and its coefficient of determination (R2). The results showed a ranking of the magnitude of the distortions found in each experimental environment, and also provided information about the efficacy of available visual cues of spatial layout. Furthermore, our data are in agreement with previous findings showing systematic perceptual errors, such as the further the stimuli, the larger the distortion of the area subtended by perceived distances between stimuli. Additionally, we measured the magnitude of distortion of visual space relative to physical space by a parameter of multidimensional scaling analyses, the RMSE. From these results, the magnitude of such distortions can be ranked, and the utility or efficacy of the available visual cues informing about the space layout can also be inferred.

En este estudio se pretendía cubrir un doble objetivo. Por un lado, determinar cómo el espacio visual, evaluado en términos de estimaciones de distancias exocéntricas, se corresponde con el espacio físico. Y, por otro lado, determinar la estructura del espacio visual a partir de las mismas estimaciones de distancias. Para ello, registramos la respuesta (métrica) de los observadores en tres entornos espaciales: (a) puntos localizados en un plano 2-D (frontoparalelo) en un rango de distancias de 20 cm; (b) estacas vistas esteroscopicamente y situadas en un espacio virtual 3-D (rango de 33 cm); y (c) estacas físicas dispuestas en un espacio abierto exterior (rango de 45 m). Los observadores hicieron juicios de emparejamiento de distancias entre todos los posibles pares que se podían formar con 16 estacas (dispuestas en una matriz cuadrada regular de 4 filas × 4 columnas). Utilizamos dos parámetros de la ley potencial de Stevens, que nos informaron de la distorsión percibida del espacio visual: el exponente y el coeficiente de determinación (R2). Los resultados permitieron ordenar la magnitud de la distorsión encontrada en cada entorno experimental, proporcionando información sobre la utilidad y eficacia de las claves de profundidad disponibles. Nuestros datos concuerdan con los obtenidos en estudios previos en mostrar una cierta anisotropía espacial que difiere en cada entorno. Adicionalmente, aplicamos el escalamiento multidimensional y medimos la distorsión a través del RECM, lo que también nos permitió ordenar la magnitud de las distorsiones en cada contexto, así como la eficacia de las claves visuales de distancia.

Type
Monographic Section: Spatial Vision and Visual Space
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Creem-Regehr, S.H., Willemsen, P., Gooch, A.A., & Thompson, W.B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34, 191204.CrossRefGoogle ScholarPubMed
Cutting, J.E. (2002). Reconceiving perceptual space. In Hecht, H., Atherton, M., & Schwartz, R. (Eds.), Perceiving pictures: An interdisciplinary approach to pictorial space. Cambridge: MIT Press.Google Scholar
Cutting, J.E., & Vishton, P.M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Epstein, W. & Rogers, S.J. (Eds.), Perception of space and motion (pp. 69117). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Da Silva, J.A. (1983a). Ratio estimation of distance in a large open field. Scandinavian Journal of Psychology, 24, 343345.CrossRefGoogle Scholar
Da Silva, J.A. (1983b). Scales for measuring subjective distance in children and adults in a large open field. The Journal of Psychology, 113, 221230.CrossRefGoogle Scholar
Da Silva, J.A. (1985). Scales for perceived egocentric distance in a large open field: Comparison of three psychophysical methods. The American Journal of Psychology, 98, 119144.CrossRefGoogle Scholar
Da Silva, J.A., & Dos Santos, R.A. (1982). Scaling apparent distance in a large open field: Presence of a standard does increase the exponent of the power function. Perceptual and Motor Skills, 55, 267274.CrossRefGoogle Scholar
Da Silva, J.A., & Fukusima, S.S. (1986). Stability of individual psychophysical functions for perceived distance in natural indoor and outdoor settings. Perceptual and Motor Skills, 63, 891902.CrossRefGoogle ScholarPubMed
Ellis, S.R., & Menges, B.M. (1997). Judgments of the distance to nearby virtual objects: Interaction of viewing conditions and accommodative demand. Presence: Teleoperators and Virtual Environments, 6, 452.CrossRefGoogle ScholarPubMed
Flückiger, M. (1991). La perception d'objects lointains. In Flückiger, M. & Klaue, K. (Eds.), La perception de l'environnement (pp. 221238). Lausanne: Delachaux et Niestlè.Google Scholar
Foley, J.M., Ribeiro-Filho, N.P., & Da Silva, J.A. (2004). Visual perception of extent and the geometry of visual space. Vision Research, 44, 147156.CrossRefGoogle ScholarPubMed
Fukusima, S.S., Loomis, J.M., & Da Silva, J.A. (1997). Visual perception of egocentric distance as assessed by triangulation. Journal of Experimental Psychology: Human Perception and performance, 23, 86100.Google ScholarPubMed
Gescheider, G.A. (1997). Psychophysics: The fundamentals (3rd ed.). Mahwah: NJ: Erlbaum.Google Scholar
Gilinsky, A.S. (1951). Perceived size and distance in visual space. Psychological Review, 58, 460482.CrossRefGoogle ScholarPubMed
Gogel, W.C. (1993). The analysis of perceived space. In Masin, S.C. (Ed.), Foundations of perceptual theory (pp. 113182). Amsterdam: Elsevier.CrossRefGoogle Scholar
Haber, R.N., & Levin, C.A. (2001). The independence of size and distance perception. Perception & Psychophysics, 63, 11401152CrossRefGoogle ScholarPubMed
He, Z.J., Wu, B., Ooi, T.L., Yarbrough, G., & Wu, J. (2004). Judging egocentric distance on the ground: Occlusion and surface integration. Perception, 33, 789806.CrossRefGoogle ScholarPubMed
Indow, T. (2004). Global structure of visual space. London: World Scientific.CrossRefGoogle Scholar
Kelly, J.W., Loomis, J.M., & Beal, A.C. (2004). Judgments of exocentric direction in large-scale space. Perception, 33, 443454.CrossRefGoogle ScholarPubMed
Kerst, S.M., Howard, J.H. Jr., & Gugerty, L.J. (1987). Judgment accuracy in pair-distance estimation and map sketching. Bulletin of the Psychonomic Society, 25, 185188.CrossRefGoogle Scholar
Koenderink, J.J., van Doorn, A.J., & Lappin, J.S. (2000). Direct measurement of curvature of visual space. Perception, 29, 6979.CrossRefGoogle ScholarPubMed
Kudoh, N. (2005). Dissociation between visual perception of allocentric distance and visually directed walking of its extent. Perception, 34, 13991416.CrossRefGoogle ScholarPubMed
Künnapas, T.M. (1960). Scales for subjective distance. Scandinavian Journal of Psychology, 1, 187192.CrossRefGoogle Scholar
Künnapas, T. (1968). Distance perception as a function of available visual cues. Journal of Experimental Psychology, 77, 523529.CrossRefGoogle ScholarPubMed
Levin, C.A., & Haber, R.N. (1993). Visual angle as a determinant of perceived interobject distance. Perception & Psychophysics, 54, 250259.CrossRefGoogle ScholarPubMed
Loomis, J.M., Da Silva, J.A., Fujita, N., & Fukusima, S.S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906921.Google ScholarPubMed
Loomis, J.M., Da Silva, J.A., Philbeck, J.W., & Fukusima, S.S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5, 7277.CrossRefGoogle Scholar
Loomis, J.M., & Knapp, J.M. (2003). Visual perception egocentric distance in real and virtual environments. In Hettinger, L.J. & Haas, M.W. (Eds.), Virtual adaptive environments (pp. 2146). Mahwah, NJ: Erlbaum.Google Scholar
Loomis, J.M., & Philbeck, J.W. (1999). Is the anisotropy of perceived 3-D shape invariant across scale? Perception & Psychophysics, 61, 397402.CrossRefGoogle ScholarPubMed
Matsushima, E.H., Oliveira, A.P., Ribeiro-Filho, N.P., & Da Silva, J.A. (2005). Visual angle as determinant factor for relative distance perception. Psicológica, 26, 97104.Google Scholar
Mon-Williams, M., Wann, J.P., & Rushton, S. (1993). Binocular vision in a virtual world: Visual deficits following the wearing of a head-mounted display. Ophthalmic and Physiological Optics, 13, 387391.CrossRefGoogle Scholar
Philbeck, J.W., Loomis, J.M., & Beall, A.C. (1997). Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 59, 601612.CrossRefGoogle ScholarPubMed
Pierce, C.A., Jewell, G., & Mennemeier, M. (2003). Are psychophysical functions derived from line bisection reliable? Journal of the International Neuropsychological Society, 9, 7278.CrossRefGoogle ScholarPubMed
Rolland, J.P., Gibson, W., & Arierly, D. (1995). Towards quantifying depth and size perception as a function of viewing distance. Presence: Teleoperators and Virtual Environments, 4, 2449.CrossRefGoogle Scholar
Sedgwick, H.A. (1986). Space perception. In Boff, K.R., Kaufman, L., & Thomas, J.P. (Eds.), Handbook of human perception and performance (pp. 21.121.57). New York: Wiley.Google Scholar
Sedgwick, H.A. (2001). Visual space perception. In Goldstein, E.B. (Ed.), Handbook of perception (pp. 129167). Oxford: Blackwell.Google Scholar
Stalans, L.J. (1995). Multidimensional scaling. In Grimm, L.G. & Yarnold, P.R. (Eds.), Reading and understanding multivariate statistics (pp. 137168). Washington, DC: American Psychological Association.Google Scholar
Stevens, S.S. (1951). Mathematics, measurement, and psychophysics. In Stevens, S.S. (Ed.), Handbook of experimental psychology. New York: Wiley.Google Scholar
Stevens, S.S. (1957). On the psychophysical law. Psychological Review, 64, 153181.CrossRefGoogle ScholarPubMed
Stevens, S.S. (1960). The psychophysical sensory function. American Scientist, 48, 226254.Google Scholar
Teghtsoonian, M., & Teghtsoonian, R. (1969). Scaling apparent distance in natural indoor settings. Psychonomic Science, 16, 281283.CrossRefGoogle Scholar
Teghtsoonian, R., & Teghtsoonian, M. (1970). Scaling apparent distance in a natural outdoor setting. Psychonomic Science, 21, 215216.CrossRefGoogle Scholar
Thompson, W.B., Willemsen, P., Gooch, A.A., Creem-Regehr, S.H., Loomis, J.M., & Beall, A.C. (2004). Does the quality of the computer graphics matter when judging distance in visually immersive environments? Presence: Teleoperators and Virtual Environments, 13, 560571.CrossRefGoogle Scholar
Wann, J.P., Rushton, S., & Mon-Williams, M. (1995). Natural problems for stereoscopic depth perception in virtual environments. Vision Research, 35, 27312736.CrossRefGoogle ScholarPubMed
Weist, W.M., & Bell, B. (1985). Stevens' exponent for psychophysical scaling of perceived, remembered, and inferred distance. Psychological Bulletin, 98, 457470.CrossRefGoogle Scholar
Witmer, B., & Sadowski, W. Jr., (1998). Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Human Factors 40, 478488.CrossRefGoogle Scholar