Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T14:00:29.511Z Has data issue: false hasContentIssue false

Effects of Spatial Frequency Content on Classification of Face Gender and Expression

Published online by Cambridge University Press:  10 January 2013

Luis Aguado*
Affiliation:
Universidad Complutense (Spain)
Ignacio Serrano-Pedraza
Affiliation:
Newcastle University (UK)
Sonia Rodríguez
Affiliation:
Universidad Complutense (Spain)
Francisco J. Román
Affiliation:
Universidad Complutense (Spain)
*
Correspondence concerning this article should be addressed to Luis Aguado. Facultad de Psicología. Campus de Somosaguas. 28223 Madrid. (Spain). Phone:+34-913943161. E-mail: laguado@psi.ucm.es

Abstract

The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cut-off frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.

En tres experimentos se estudió el papel de diferentes bandas de frecuencias espaciales sobre la categorización del género y la expresión de las caras. Se tomaron medidas de precisión y tiempo de reacción a caras no filtradas y a caras filtradas a paso bajo (frecuencia de corte de 1 ciclo/grado) y a paso alto (frecuencia de corte de 3 ciclos/grado). Todas las caras fueron igualadas en energía de contraste. En ambas tareas, los tiempos de reacción a las caras filtradas a paso bajo fueron superiores a los de las caras filtradas a paso alto y no filtradas. En la tarea de expresión, se obtuvo este resultado tanto con caras expresivas presentadas por separado (Experimento 1) como con secuencias dinámicas en las que cada cara expresiva era precedida de una versión neutra de la misma cara presentada brevemente (Experimento 2). En el caso de las caras filtradas a paso alto se observaron efectos diferentes sobre la categorización de género y de expresión. Aunque tanto la rapidez como la precisión de la categorización de género se redujeron en esta condición, la eficiencia de la clasificación de la expresión quedó inalterada. Por último, no se encontraron diferencias entre caras expresivas y no expresivas en cuanto a los efectos de las distintas frecuencias espaciales sobre la categorización del género. Estos resultados muestran que la banda de altas frecuencias espaciales desempeña un papel importante en la categorización del género y la expresión de las caras.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguado, L., Garcia-Gutierrez, A., & Serrano-Pedraza, I., (2009). Symmetrical interaction of sex and expression in face classification tasks. Attention, Perception & Psychophysics, 71, 925.CrossRefGoogle ScholarPubMed
Arcuril, L., Castelli, S., Boca, F., Lorenzi-Cioldi, F., & Dafflon, A., (2001). Fuzzy gender categories: How emotional expression influences typicality. Swiss Journal of Psychology, 60, 179191.Google Scholar
Atkinson, A. P., Tipples, J., Burt, D. M., & Young, A. W., (2005). Asymetric interference between sex and emotion in face perception. Perception and Psychophysics, 67, 11991213.CrossRefGoogle Scholar
Bachmann, T. (1991). Identification of spatially quantised tachistoscopic images of faces: How many pixels does it take to carry identity? European Journal of Cognitive Psychology, 3, 85103.CrossRefGoogle Scholar
Brown, E., & Perret, D. I. (1993). What gives a face its gender? Perception, 22, 829840CrossRefGoogle ScholarPubMed
Bruce, V., & Young, A., (1986). Understanding face recognition. British Journal of Psychology, 77, 305327.CrossRefGoogle ScholarPubMed
Calder, A. J., & Young, A. W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6, 641651.CrossRefGoogle ScholarPubMed
Deruelle, C., & Fagot, I., (2005). Categorizing facial identities, emotions, and genders: Attention to high- and low-spatial frequencies by children and adults. Journal of Experimental Child Psychology, 90, 172184.CrossRefGoogle ScholarPubMed
Deruelle, C., Rondan, C., Salle-Collemiche, X., Bastard-Rosset, , & Da Fonseca, D. (2008). Attention to low- and high-spatial frequencies in categorizing facial identities, emotions and gender in children with autism. Brain and Cognition, 66, 115123.CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V., (1978). Facial action coding system.Palo Alto: Consulting Psychologists Press.Google Scholar
Ellison, J. W., & Massaro, D. W. (1997). Featural evaluation, integration, and judgment of facial affect. Journal of Experimental Psychology: Human Perception and Performance, 23, 213226.Google ScholarPubMed
Costen, N. P., Parker, D. M., & Craw, I., (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & Psychophysics, 58, 602612.CrossRefGoogle ScholarPubMed
Fiorentini, A., Maffei, L., & Sandini, G., (1983). The role of high spatial frequencies in face perception. Perception, 12, 195201.CrossRefGoogle ScholarPubMed
Goffaux, V., Jemel, B., Rossion, J., & Schyns, P., (2003). ERP evidence for task modulations on face perceptual processing at different spatial scales. Cognitive Science, 27, 313325.Google Scholar
González, R. C., & Wintz, P. (1987) Digital image processing (2nd edition) Reading, MA: Addison-Wesley.Google Scholar
Hall, J. A., (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85, 845857.CrossRefGoogle Scholar
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223233.CrossRefGoogle ScholarPubMed
Holmes, A., Green, S., & Vuilleumier, P., (2005). The involvement of distinct visual channels in rapid attention towards fearful facial expressions. Cognition & Emotion, 19, 899922.CrossRefGoogle Scholar
Le Gal, P. M., & Bruce, V., (2002). Evaluating the independence of sex and expression in judgement of faces. Perception & Psychophyisics, 64, 230243.CrossRefGoogle ScholarPubMed
Lundqvist, D., & Litton, J. E., (1998). The Averaged Karolinska Directed Emotional Faces. AKDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet, ISBN 91-630-7164-9.Google Scholar
Morrison, D. J., & Schyns, P. G., (2001). Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin & Review, 8, 454469.CrossRefGoogle ScholarPubMed
Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision Research, 39, 38243833.CrossRefGoogle ScholarPubMed
O'Toole, ARoark, D., & Abdi, H., (2002). Recognizing moving faces: a psychological and neural synthesis. Trends in Cognitive Sciences, 6, 261266.CrossRefGoogle ScholarPubMed
Penton-Voak, I., Allen, T., Morrison, E., Gralewski, L., & Campbell, N. (2007). Performance on a face perception task is associated with empathy quotient scores, but not systemizing scores or participant sex. Personality and Individual Differences, 43, 22292236.CrossRefGoogle Scholar
Rotter, N. & Rotter, G., (1988). Sex differences in the encoding and decoding of negative facial emotions, Journal of Nonverbal Behavior, 12, 139148.CrossRefGoogle Scholar
Ruiz-Soler, M., & Beltrán, F. (2006). Face perception: An integrative review of the role of spatial frequencies. Psychological Research, 70, 273292.CrossRefGoogle ScholarPubMed
Sato, W., Kochiyama, T., Yoshikawa, S., Naito, E., & Matsumura, M. (2004). Enhanced neural activity in response to dynamic facial expressions of emotion: An fMRI study. Cognitive Brain Research, 20, 8191.CrossRefGoogle ScholarPubMed
Schyns, P., & Oliva, A., (1999). Dr.Angry, and Mr.Smile, : when categorization flexible modifies the perception of faces in rapid visual presentations. Cognition, 69, 243265.CrossRefGoogle Scholar
Sierra-Vázquez, V., Serrano-Pedraza, I., & Luna, D., (2006). The effect of spatial-frequency filtering on the visual processing of global structure. Perception, 35, 15831609.CrossRefGoogle ScholarPubMed
Stromeyer, C. F., & Julesz, B., (1972). Spatial-frequency masking in vision: critical bands and spread of masking. Journal of the Optical Society of America, 62, 12211232.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J., Driver, J., & Dolan, R. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624631.CrossRefGoogle ScholarPubMed
Yoshikawa, S., & Sato, W., (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive, Affective, & Behavioral Neuroscience, 8, 2531.CrossRefGoogle ScholarPubMed