Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T08:52:16.219Z Has data issue: false hasContentIssue false

Geometrical Structures of Photographic and Stereoscopic Spaces

Published online by Cambridge University Press:  10 April 2014

Toshio Watanabe*
Affiliation:
Keio University, Japan
*
Correspondence concerning this article should be addressed to Professor Toshio Watanabe, E-mail: watanabe@sfc.keio.ac.jp

Abstract

Two experiments were conducted to investigate the geometrical structures of photographic and stereoscopic spaces. In Experiment 1, it was investigated how accurately photographic space reproduces real physical space, and the geometrical structure of photographic space was compared with that of visual space. As a result, the mapping function of distance between photographic and physical spaces (δ = adb) shows that a and b range from 0.96–1.1 and 0.69–0.78. The mapping function of angle between photographic and physical spaces (Φ = gϕh) shows that g and h range from 2.37–5.29 and 0.74–0.97. Further, photographic space has larger anisotropic property than visual space and photographic space may be hyperbolic. In Experiment 2, the geometrical structure of stereoscopic space was compared with that of visual space. It was found that stereoscopic space was almost the same as visual space.

Se realizaron dos experimentos para investigar las estructuras geométricas de los espacios fotográficos y estereoscópicos. En el Experimento 1 se investigó la precisión con que el espacio fotográfico reproduce el espacio físico real, y se comparó la estructura geométrica del espacio fotográfico con la del espacio visual. Como resultado la función de correspondencia para la distancia entre los espacios fotográficos y los físicos (δ = adb) muestra que a y b varían entre 0.96–1.1 y 0.69–0.78. La función de correspondencia angular del ángulo entre los espacios fotográficos y los físicos (Φ = gϕh) muestra que g y h varían entre 2.37–5.29 y 0.74–0.97. Además, el espacio fotográfico tiene una propiedad anisotrópica mayor que el espacio visual, y el espacio fotográfico podría ser hiperbólica. En el Experimento 2, se comparó la estructura geométrica del espacio estereoscópico con la del espacio visual. Se encontró que el espacio estereoscópico era casi igual que el espacio visual.

Type
Monographic Section: Spatial Vision and Visual Space
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blank, A.A. (1961). Curvature of binocular visual space. An experiment. Journal of the Optical Society of America, 51, 335339.CrossRefGoogle Scholar
Finch, D. (1977). Hyperbolic geometry as an alternative to perspective for constructing drawings of visual space. Perception, 6, 178182.CrossRefGoogle ScholarPubMed
Foley, J.M. (1966). Locus of perceived equi-distance as a function of viewing distance. Journal of the al Society of America, 56, 822827.CrossRefGoogle Scholar
Foley, J.M. (1968). Depth, size and distance in stereoscopic vision. Perception & Psychophysics, 3, 265274.CrossRefGoogle Scholar
Foley, J.M. (1970). Loci of perceived, equi-, half- and double-distance in stereoscopic vision. Vision Research, 10, 12011209.CrossRefGoogle ScholarPubMed
Gibson, J.J. (1951). A theory of pictorial perception. Audio-Visual Communication Review, 1, 123.Google Scholar
Hagen, M.A. (1974). Picture perception: Toward a theoretical model. Psychological Bulletin, 81, 471497.CrossRefGoogle ScholarPubMed
Hagen, M.A., & Glick, R. (1977). Pictorial perspective: Perception of size, linear, and texture perspective in children and adults. Perception, 6, 675684.CrossRefGoogle ScholarPubMed
Hagen, M.A., Jones, R.K., & Reed, E.S. (1978). On a neglected variable in theories of pictorial perception: Truncation of the visual field. Perception & Psychophysics, 23, 326330.CrossRefGoogle ScholarPubMed
Hagino, G. & Yoshioka, I. (1976). A new method for determining the personal constants in the Luneburg theory of binocular visual space. Perception & Psychophysics, 19, 499509.CrossRefGoogle Scholar
Hecht, H., van Doorn, A., & Koenderink, J.J. (1999). Compression of visual space in natural scenes and in their photographic counterparts. Perception & Psychophysics, 61, 12691286.CrossRefGoogle ScholarPubMed
Higashiyama, A. (1992). Anisotropic perception of visual angle: Implications for the horizontal-vertical illusion, overconstancy of size, and the moon illusion. Perception & Psychophysics, 51, 218230.CrossRefGoogle ScholarPubMed
Howard, I.P. & Rogers, B.J. (1995). Binocular vision and stereopsis. New York: Oxford University Press.Google Scholar
Indow, T. (1979). Alleys in visual space. Journal of Mathematical Psychology, 19, 221258.CrossRefGoogle Scholar
Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.Google Scholar
Kraft, R.N., Patterson, J.F., & Mitchell, N.B. (1986). Distance perception in photographic displays of natural settings. Perceptual and Motor Skills, 62, 179186.CrossRefGoogle ScholarPubMed
Luneburg, R.K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.Google Scholar
Oyama, T. (1974). Perceived size and perceived distance in stereoscopic vision and an Analysis of their causal relations. Perception & Psychophysics, 16, 175181.CrossRefGoogle Scholar
Smith, O.W. (1958a). Comparison of apparent depth in a photograph viewed from two distances. Perceptual and Motor Skills, 8, 7981.CrossRefGoogle Scholar
Smith, O.W. (1958b). Judgments of size and distance in photographs. American Journal of Psychology, 71, 529538.CrossRefGoogle ScholarPubMed
Smith, O.W., & Gruber, H. (1958). Perception of depth in photographs. Perceptual and Motor Skills, 8, 307313.CrossRefGoogle Scholar
Watanabe, T. (2004). Anisotropy in depth perception of photograph. The Journal of Psychology, 75, 2432.Google ScholarPubMed