Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T06:01:45.093Z Has data issue: false hasContentIssue false

The Neurophysiological Validation of the Hyperpolarization Theory of Internal Inhibition

Published online by Cambridge University Press:  10 April 2014

Galina I. Shulgina*
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
*
Correspondence concerning this article should be addressed to: Shulgina Galina I., Doctor of Biological Sciences, Leading Researcher, Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, 117465 Moscow, Butlerova 5A. (Russia). Phone: (095) 789-38-52*20 60 (w), (095)940-37-74(h), 8 905 700 05 02. E-mail: Shulgina@rdm.ru

Abstract

The experiments in conscious non-immobilized rabbits showed that cessation of the reactions without reinforcement (elaboration of the internal inhibition) is accompanied by an enhanced phasic state, by alternation of activation and inhibition of neuron firing, and by the corresponding slow potential oscillation (SPO). These changes can be either localized, predominantly in the structures of conditioned stimulus, or, under enhancement of the inhibitory state, generalized in the brain structures. On the basis of our experience and published data, it is concluded that the above event results from relative enhancement of the inhibitory hyperpolarizing processes due to increase in reactivity of the inhibitory systems to stimulus, which acquires inhibitory properties during learning. Changes in the excitability and reactivity of neuron populations appearing during enhancement of the hyperpolarizing inhibition, and differing in the various brain structures, play an active role in the execution of the main function of the internal inhibition: limitation of excitation transmission to the effectors. An inhibitory mediator gamma aminobutyric acid (GABA) is of great importance in inhibiting the excitation in response to the stimulus which lost its biological significance. These experimental data and their interpretation in the light of published data give the basis for the development of the hyperpolarization theory of internal inhibition.

En los experimentos con conejos conscientes no inmovilizados se ha mostrado que la interrupción de las reacciones tras la supresión del refuerzo, es decir, la elaboración de la inhibición interna, se ve acompañada por el incremento de fases, la alternancia de la activación y la inhibición del disparo de las neuronas, y sus correspondientes oscilaciones lentas de potencial. Estos cambios pueden ser locales, principalmente en las estructuras del estímulo condicionado o, en caso de incremento del estado de inhibición, generalizados sobre las estructuras del cerebro. Basándonos en nuestros datos y en los de la literatura actual se llega a la conclusión de que ese fenómeno está condicionado por el incremento de los procesos inhibitorios de hiperpolarización a raíz del incremento de la reactividad de los sistemas inhibitorios de la acción del estímulo, que adquiere significado inhibitorio durante el proceso de aprendizaje. La oscilación de la excitabilidad y reactividad en las poblaciones de elementos nerviosos que surge durante el incremento de la inhibición de la hiperpolarización, divergentes en distintas estructuras del cerebro, juega un papel activo en la ejecución de la función básica de la inhibición interna, la limitación de la transmisión de la excitación a los efectores. El mediador inhibidor, el ácido gama aminobutírico (GABA), juega un papel esencial en la desarrollo de la inhibición de la excitación al estímulo que ha perdido su significado biológico. Estos datos experimentales y su interpretación a la luz de los datos de la literatura dan fundamento al desarrollo de la teoría de hiperpolarización de la inhibición interna.

Type
Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, D., Davidova, H., & Gabriel, H.J. (1990). Conditioning-related changes of unit activity in the dorsal lateral geniculate nucleus of uretane-anaeshetized rats. Brain Research Bulletin, 25, 5563.CrossRefGoogle ScholarPubMed
Andersen, P., & Andersson, S.A. (1968) Physiological basis of the alpha rhythm. New York: Appelton Century Crofts.Google Scholar
Anokhin, P.K. (1968). Biologiya i neirofiziologiya uslovnogo refleksa [Biology and neurophysiology of the conditioned reflex]. Moscow: Meditsina.Google Scholar
Arduini, A., Berlucchi, G., & Strata, P. (1963). Pyramidal activity during sleep and wakefulness. Archives of Italian Biology, 101, 530544.Google ScholarPubMed
Avoli, M. (1996). GABA-mediated synchronous potentials and seizure generation. Epilepsia, 37, 10351042.CrossRefGoogle ScholarPubMed
Avoli, M., Hwa, G., Louvel, J., Kurcewicz, I., Pumain, R., Lacaille, J.C. (1997). Functional and pharmacological properties of GABA-mediated inhibition in the human neocortex. Canadian Journal of Physiological Pharmacology, 75, 526534.CrossRefGoogle ScholarPubMed
Babb, Th.L., Pretorius, J.K., Kupfer, W.R., & Crandall, P.H. (1989). Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. Journal of Neuroscience, 9, 25622574.CrossRefGoogle ScholarPubMed
Baumgarten, G. (1955). Reactionen einzelnen Neurone in optischen cortex der Katze nach Lichtblitzen [Reactions of single neurons in cat visual cortex to light flashes). Pflugers Archiv, 251, 457469.CrossRefGoogle Scholar
Benardo, L.S. (1997). Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. Journal of Neurophysiology, 77, 31343144.CrossRefGoogle ScholarPubMed
Best, M.R., & Best, Ph.J. (1976). The effects of state of consciousness and latent inhibition on hippocampal unit activity in the rat during conditioning. Experimental Neurology, 51, 564573.CrossRefGoogle ScholarPubMed
Bishop, G.H., & Clare, M.H. (1952). Relations between specifically evoked and “spontaneous” activity of optic cortex. Electroencephalography and Clinical Neurophysiology, 1, 321330.CrossRefGoogle Scholar
Bolshev, L.I., & Smirnov, I.V. (1965). Tablitsy matematicheskoy statistiki [Tables of mathematical statistics]. Moscow: Nauka.Google Scholar
Christian, K. (1960). The EEG modification during the formation of the conditioned reflex in man. Electroencephalography and Clinical Neurophysiology, 12, 755.Google Scholar
Clemente, C.D. (1968). Forebrain mechanisms related to internal inhibition and sleep. Conditional Reflex, 3, 145174.CrossRefGoogle ScholarPubMed
Costa, E., Davis, J.M., Dong, E., Grayson, D.R., Guidotti, A., Tremolizzo, L., & Veldic, M. (2004). GABAergic cortical deficit dominates schizophrenia patophysiology. Critical Review of Neurobiology, 16, 123.Google Scholar
Coutureau, E., Gosselin, O., & Di Seala, G. (2000). Restoration of latent inhibition by olanzapine but not haloperidol in entorinal cortex lesioned rats. Psychopharmacology, 150, 226233.CrossRefGoogle ScholarPubMed
Creutzfeldt, O., & Ito, M. (1968). Functional synaptic organization of primary visual cortex. Experimental Brain Research, 6, 324352.CrossRefGoogle ScholarPubMed
Creutzfeldt, O.P., Watanabe, S., & Lux, H.D. (1966). Relation between EEG phenomena and potentials of single cortical cells. 1. Evoked responses after thalamic and epicortical stimulation. Electroencephalography and Clinical Neurophysiology, 20, 19–3.CrossRefGoogle Scholar
Dalvi, A., & Rodgers, R.J. (1996). GABAergic influences on plus-maze behavior in mice. Psychopharmacology, 128, 380397.CrossRefGoogle Scholar
Eccles, J.C. (1964). The physiology of synapses. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Eccles, J.C. (1969). The inhibitory pathways of the central nervous system. London: Liverpool University Press.Google Scholar
Ellenbroek, B.A., Budde, S., & Cools, A.R. (1996). Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience, 75, 535542.CrossRefGoogle ScholarPubMed
Enomoto, T.F., & Ajmone-Marsan, C. (1959). Epileptic activation of single cortical neurons and their relationship with electroencephalographic discharges. Electroencephalography and Clinical Neurophysiology, 11, 199218.CrossRefGoogle ScholarPubMed
Ewarts, E.V. (1963). Photically evoked responses in visual cortex units during sleep and waking. Journal of Neurophysiology, 26, 229248.CrossRefGoogle Scholar
Farley, B.J., & Alkon, D.L. (1985). Cellular mechanisms of learning, memory and information storage. Annual Review of Psychology, 36, 419494.CrossRefGoogle ScholarPubMed
Fendt, M. (1998). Different regions of the periaqueductal grey are involved differently in the expression and conditioned inhibition of fear-potentiated startle. European Journal of Neuroscience, 9, 38763884.CrossRefGoogle Scholar
Finamore, T.L., Seybold, K.S., Noble, M., & Port, R.L. (2001). Contributions of hippocampal cellular damage and NMDA receptor dysfunction to behavioral markers of schizophrenia. International Journal of Neuroscience, 109, 6171.CrossRefGoogle ScholarPubMed
Fisher, R.S., & Levin, M.S. (1989). Transmitter cosynthesis by corticopetal basal forebrain neurons. Brain Research, 491, 163168.CrossRefGoogle ScholarPubMed
Freeman, J.H., & Nicholson, D.A. (1999). Neuronal activity in the cerebellar interpositus and lateral pontine nuclei during inhibitory classical conditioning of the eyeblink response. Brain Research, 833, 225233.CrossRefGoogle ScholarPubMed
Freund, T.F., & Gulyás, A.I. (1997). Inhibitory control of GABAergic interneurons in the hippocampus. Canadian Journal of Physiological Pharmacology, 75, 479487.CrossRefGoogle ScholarPubMed
Frolov, A.A., Medvedev, A.V., Dolina, C.A., Kuznetsova, G.D., & Shulgina, G.I. (1984). Modelirovanie razlichnykh rezhimov bioelektricheskoy aktivnosti mozga v norme i pri povyshennoy “sudorozhnoy gotovnosti” na seti iz nevronopodobnykh elementov [The modeling of different regimes brain bioelectrical activity in norm and by the increased “seizure readiness” at net of neuron-like elements]. Zhurnal vysshey nervnoy deyatelnosti, 34, 527536.Google Scholar
Fuster, J.M., & Alexander, G.E. (1971). Neuron activity related to short-term memory. Science, 173, 652656.CrossRefGoogle ScholarPubMed
Gaiarsia, J-L., Caillard, O., & Ben-Ari, Y. (2002). Long-term plasticity at GABAergic and glicin-ergic synapses: Mechanisms and functional significance. Trends in Neurosciences, 25, 564570.CrossRefGoogle Scholar
Gastaut, H., Jus, F., Morrell, F., Storm Van Leeuven, W., Dongier, S., Naquet, R., Regis, N., Roger, A., Bekkering, D., Kamp, A., & Werre, J. (1957). Étude topographique des réactions électroencephalographiques conditionnées chez l'homme [Topographic study of human electroencephalographic conditioned reactions]. Electroencephalography and Clinical Neurophysiology, 9, 134.CrossRefGoogle Scholar
Gluck, H., & Rowland, V. (1959). Defensive conditioning of electroencephalographic arousal with delayed and differentiated auditory stimuli. Electroencephalography and Clinical Neurophysiology, 11, 485496.CrossRefGoogle Scholar
Grüsser, O.G., & Grützner, A. (1958). Reaktionen einzelner Neurons des optischen Cortex der Katze nach electrischen Reiz serien des Nervus opticus [Reactions of single neurons of cat visual cortex to series of electrical stimulation of nervus opticus]. Archiv Psychiatrie und Neurologie, 197, 405432.CrossRefGoogle Scholar
Guselnikov, B.I., & Supin, A.Ya. (1968). Ritmicheskaya aktivnost' golovnogo mozga [A rhythmical brain activity]. Mos?ow: MGU.Google Scholar
Hernandez-Peon, R. (1960). Neurophysiological correlates of habituation and other manifestations of plastic inhibition. Electroencephalography and Clinical Neurophysiology, 13, 101114.Google Scholar
Holliday, M.S. (1973). Tormozhenie i instrumentalnoe obuchenie [The inhibition and instrumental learning]. Mechanizmy formirovaniya i tormozheniya uslovnykh refleksov [Mechanisms of formation and inhibition of conditioned reflexes] (pp. 257279). Moscow: Nauka.Google Scholar
Horn, G. (1967). Neuronal mechanisms of habituation. Nature, 215, 707711.CrossRefGoogle ScholarPubMed
Huttenlocher, P.R. (1961). Evoked and spontaneous activity in single units of medial brain stem during natural sleep and waking. Journal of Neurophysiology, 24, 431468.CrossRefGoogle Scholar
Japha, K., & Koch, M. (1999). Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: Reversal by haloperidol. Psychopharmacology, 144, 347355.CrossRefGoogle ScholarPubMed
Jasper, H., Ricci, G., & Doane, B. (1960). Microelectrode analysis of cortical cells discharge during avoidance conditioning in the monkey. Electroencephalography and Clinical Neurophysiology, Suppl. 13, 137155.Google Scholar
Jasper, H.H., & Stefanis, C. (1965). Intracellular oscillatory rhythms in the cat. Electroencephalography and. Clinical Neurophysiology, 8, 541553.CrossRefGoogle Scholar
Jefferys, J.G., & Whittington, M.F. (1996). Review of the role of inhibitory neurons in chronic epileptic foci induced by intracerebral tetanus toxin. Epilepsy Research, 26, 5966.CrossRefGoogle ScholarPubMed
John, E.R., & Morgades, P.P. (1969). Neural correlates of conditioned responses. Studies with multiple chronically implanted moving microelectrodes. Experimental Neurology, 23, 412425.CrossRefGoogle Scholar
Jones, D., & Gonzalez-Lima, F. (2001). Associative effects of Pavlovian differential inhibition of behavior, European Journal of Neuroscience, 14, 19151927.Google Scholar
Khapazhev, T.Sh. (1978). Vliyanie bromida na funktsionalnoe vzaimodeystvie sensornotornykh nevronov kory mozga krolika [The influence of bromide on functional interaction of sensorimotor neurons rabbit brain cortex]. Zhurnal vysshey nervnoy deyatelnosti, 28, 10901093.Google Scholar
Kogan, A.B. (1961). The manifestations of processes of higher nervous activity in the electrical potentials of the cortex during free behavior of animals. Electroencephalography and Clinical Neurophysiology, Suppl. 13, 5164.Google Scholar
Kondratjeva, I.N., & Polansky, V.B. (1968). Inhibition in the neuronal system of the visual cortex. Acta Nervosa Superior, 10, 111.Google ScholarPubMed
Konorski, J. (1967). Integrative activity of the brain. Chicago and London: The University of Chicago Press.Google Scholar
Kotani, S., Kawahara, Sh., & Kirino, Y. (2002). Classical eyeblink conditioning in decerebrate guinea pigs. European Journal of Neuroscience, 15, 12671270.CrossRefGoogle ScholarPubMed
Koys, T., & Tepper, J.M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2, 467473.CrossRefGoogle Scholar
Kratin, Y.G. (1967). Elektricheskie reaktsii mozga na tormoznye stimuly [The electrical brain reactions to inhibitory stimuli]. Leningrad: Nauka.Google Scholar
Kubota, Y., Wolske, M., Poremba, A., Kang, E., & Gabriel, M. (1996). Stimulus-related and movement-related single-unit activity in rabbit cingulated cortex and limbic thalamus during performance of discriminative avoidance behavior, Brain Research, 721, 2238.Google Scholar
Kubota, K., Yamamoto, T., & Suzuki, H. (1974). Visiokinetic activities of primate prefrontal neurons during delayed-response performance. Journal of Neurophysiology, 37, 11971212.CrossRefGoogle ScholarPubMed
Li, Ch.-L., Ortiz-Galvin, A., Chou, Sh.N., & Howard, S.Y. (1960). Cortical intracellular potentials in response to stimulation of lateral geniculate body. Journal of Neurophysiology, 23, 592617.CrossRefGoogle ScholarPubMed
Livanov, M.N., & Shulgina, G.I. (1983). Neurophysiological mechanisms of internal inhibition. The Pavlovian Journal of Biological Sciences, 18, 612.CrossRefGoogle ScholarPubMed
Lubow, R.E. (1989). Latent inhibition and conditioned-attention theory. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Lubow, R.E., & Gewirtz, J.C. (1995). Latent inhibition in humans: Data, theory, and implications for schizophrenia. Psychological Bulletin, 117, 87103.CrossRefGoogle ScholarPubMed
Luscher, W. (2002). Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. Central Nervous System Drugs, 16, 669695.Google Scholar
Micheva, K.D., & Beaulieu, C. (1997). Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: A review. Canadian Journal of Physiological Pharmacology, 75, 470478.CrossRefGoogle ScholarPubMed
Morrell, F. (1960). Microelectrode and steady potential studies suggesting a dendritic locus of closure. Electroencephalography and Clinical Neurophysiology, Suppl. 13, 6579.Google Scholar
Morrell, F. (1967). Electrical signs of sensory coding. In Qarton, G.C.Melnitchuk, T.H., & Schmitt, F.O., (Eds.), The Neurosciences, a study program (pp. 452468). New York: The Rockefeller University Press.Google Scholar
Mosolov, S.N. (2002). Segodnyashnee sostoyanie razvitiya psikhofarmakoterapii [Present-day state of psychopharmacotherapy development]. Russkiy medizinskiy zhurnal. 1056010566.Google Scholar
Mukhin, E.G. (1984). Nevrofarmakologicheskiy analiz dopamine, cholin- I GABA-ergicheckoy system mozga v organizatsii refleksov na vremya [Neuropharmacological analyses of dophamin-, cholin-, and GABAergic brain system in organization of reflex on time]. Zhurnal vysshey nervnoy deyatelnosti, 34, 729737.Google Scholar
Murphy, C.A., Di Iorio, L., & Feldon, J. (2001). Effects of psychostimulant withdrawal on latent inhibition of conditioned active avoidance and prepulse inhibition of the acoustic startle response. Psychopharmacology, 156, 155165.CrossRefGoogle ScholarPubMed
Narbutovitch, I.O., & Podkopaev, N.A. (1936). Uslovnyi refleks kak assotsiatsiya [The conditioned reflex as association]. Trudy Fiziologicheskikh Laboratori Im. I.P. Pavlova, 6, 5.Google Scholar
Oswald, C.J.P., Yee, B.K., Rawlins, J.N.P., Bannerman, D.B., Good, M., & Honey, R.C. (2002). The influence of selective lesions to components of the hippocampal system on the orientating response, habituation and latent inhibition. European Journal of Neuroscience, 15, 19831991.CrossRefGoogle ScholarPubMed
Pavlov, I.P. (1973). Dvadtsatiletniy opyt objektivnogo izucheniya vysshey nervnoy deiyatelnosti (povedenija) zhivotnykh [Twenty years' experience of objective study of the animal's higher nervous activity (behavior)]. Moscow: Nauka.Google Scholar
Perekalin, V.V., & Zhobacheva, M.M. (1959). Sintez gamma-amino kislot I pirrolidonov [The synthesis of gamma-amino acids and pirrolidones] Zhurnal obschey khimii, 29, 29052910.Google Scholar
Powell, D.A., Watson, K.L., & Buchman, Sh.L. (1990). Neuronal activity in the mediodorsal and intralaminar nuclei of the dorsal thalamus during classical heart rate conditioning. Brain Research, 532, 211221.CrossRefGoogle ScholarPubMed
Rabinovich, M.Ya. (1975). Zamikatelnaya funktsiya mozga [The enclosing brain function]. Moscow: Meditsina.Google Scholar
Repa, J.Ch., Muller, J., Apergis, J., Desrochers, Th.M., Zhou, Yu., & LeDoux, J.E. (2001). The different lateral amigdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience, 4, 724731.CrossRefGoogle Scholar
Rougel-Buser, A., & Buser, P. (1973). Pavlov's internal inhibition and transitional states of vigilance. Electroencephalography and Clinical Neurophysiology, 4, 6978.CrossRefGoogle Scholar
Santini, E., Muller, R.U., & Quirk, G.J. (2001). Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. Journal of Neuroscience, 21, 90099028.CrossRefGoogle ScholarPubMed
Semyanov, A., Walker, M.C., & Kullmann, D.M. (2003). GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nature Neuroscience, 6, 484490.CrossRefGoogle ScholarPubMed
Shulgina, G.I. (1969). Reaktsii nevronov kory golovnogo mozga krolika na ranney stadii vyrabotki oboronitelnogo uslovnogo refleksa na ritmicheskiy svet [Responses of the cortical neurons of the rabbit at an early stage of defensive conditioning to the rhythmic light]. Zhurnal vysshey nervnoy deyatelnosti, 19, 779787.Google Scholar
Shulgina, G.I. (1976). Medlennye potentiali i impulsnaya aktivnost' nevronov kory bol'shogo mozga pri vyrabotke vnutrennego tormozheniya [Slow potentials and spike unit activity of the cerebral cortex during elaboration of internal inhibition]. Zhurnal vysshey nervnoy deyatelnosti, 26, 962970.Google Scholar
Shulgina, G.I. (1978). Bioelektritcheskaya aktivnost' mozga i uslovnyi refleks [Bioelectrical activity of the brain and the conditioned reflex]. Moscow: Nauka.Google Scholar
Shulgina, G.I. (1986). On neurotransmitter mechanisms of reinforcement and internal inhibition. The Pavlovian Journal of Biological Science, 21, 129140.CrossRefGoogle ScholarPubMed
Shulgina, G.I. (1987). Experimentalnomu i teoreticheskomu obosnovaniyu giperpolyarizatsionnoy teorii vnutrennego tormozheniya [Experimental and theoretical evidence of hyperpolarization theory of internal inhibition]. Zhurnal Uspekhi Physiologicheskikh Nauk, 18, 8097.Google Scholar
Shulgina, G.I. (2002). Primenenie modeli neuroceti dlya analiza geneza i funktsionalnoy roli vnutrennego tormozheniya [Application of neural network model for analyses of internal inhibition's genesis and functional role]. Neurocomp'yutery, 1–2, 7078.Google Scholar
Shulgina, G.I., Balashova, A.N., & Okhotnikov, N.V. (1991). Neurobiology of the integrative activity in the brain. Dynamic activity of the activation and inhibitory types of synchronization of cortical neurons during the realization of a defensive reflex and of internal inhibition. Neuroscience and behavioral physiology, 21, 302310.CrossRefGoogle ScholarPubMed
Shulgina, G.I., & Muravev, A.A. (2000). Analyses of the effect of backward masking by means of a complex model of a net of neuron-like elements. Human Physiology, 26, 3440.CrossRefGoogle Scholar
Shulgina, G.I., & Okhotnikov, N.V. (1991). Dynamics of synchronization in the functioning of neurons of the new cortex and hippocampus during learning before and after the administration of nootropic agents and narcotics. Neuroscience and behavioral physiology, 21, 416421.CrossRefGoogle ScholarPubMed
Shulgina, G.I., Petricheva, A.P., & Kuznetzova, G.G. (1985). Vliyanie proizvodnogo GAMK - fenibuta na povedenie i aktivnost' nevronov zritelnoy kory krolikov pri vyrabotke oboronitelnogo refleksa i vnutrennego tormozheniya [Effect of GABA-derivate - phenibut on the behavior and activity of neurons in the rabbit visual cortex during elaboration of defensive reflex and internal inhibition]. Zhurnal vysshey nervnoi deyatelnosti, 25, 695702.Google Scholar
Shulgina, G.I., Ponomarev, V.N., Murzina, G.B., & Frolov, A.A. (1985). A model of neuronal network learning based on variations of the efficiency of excitatory and inhibitory synapses. Neuroscience and behavioral physiology, 15, 395403.CrossRefGoogle Scholar
Shulgina, G.I., & Voronina, G.A. (1997). Effects of dilantin on the inhibition of neocortical and hippocampal neurons under conditions of the interaction of a nonrelevant stimulus and the dominant state of a defensive reflex. Human Physiology, 23, 423428.Google Scholar
Shulgina, G.I., & Ziablitzeva, E.A. (2004). Defitsit “latentnogo tormozheniya” pri shizofrenii kak defitsit ugasatelnogo tormozheniya po I.P. Pavlovu, vozmozhnaya rol' GAMK i ee derivatov dlya lecheniya etogo defitsita [Deficiency of “latent inhibition” by schizophrenia as deficiency of I.P. Pavlov's extinctive inhibition, a possible part of GABA and its derivatives for treatment this deficiency]. In Bagaev, V.I. & Petukhov, Yu.L. (Eds.), Bekhterevskie chteniya [The Bechterev readings] (Part 1, pp. 339344). Kirov: Psikhonevrologicheski Institut im. V.M.Bekhtereva.Google Scholar
Shumilina, A.I. (1968). Experimentalnyi analiz metodom vyzvannikh potentialov korkovo - podkorkovoy reverberatsii vozbuzhdeniya [Experimental analysis by method of evoked potentials cortical-subcortical reverberation of excitation]. Integrativnaya deyatelnost' nervnoy sistemy v norme I patologii [Integrative activity of nervous system in the norm and pathology] (pp. 276278). Moscow: Meditsina.Google Scholar
Siegel, I.J., & Wang, R.Y. (1974). Electroencephalographic, behavioral and single-unit effects produced by the stimulation of the forebrain inhibitory structures in cats. Experimental Neurology, 48, 2850.CrossRefGoogle Scholar
Skinner, B.F. (1959). Cumulative Record. New York. Appleton-Century-Crofts.Google Scholar
Solomon, P.R., & Moore, J.W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbit following dorsal hippocampal ablation. Journal of Comparative and Physiological Psychology, 89, 11921203.CrossRefGoogle ScholarPubMed
Steriade, M. (1999). Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosciences, 22, 337345.CrossRefGoogle ScholarPubMed
Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86, 139.CrossRefGoogle ScholarPubMed
Storozhuk, V.M., Sanzharovsky, A.V., & Busel, B.I. (1998). Interaction between dopamine and glutamate in the sensorimotor cortex during conditioned placing reaction. Neuroscience, 85, 347359.CrossRefGoogle ScholarPubMed
Sudakov, K.V., & Zhuravlev, B.V. (1981). Burst pattern of unit discharges as a reflection of expectation of food reinforcement by hungry animals. Neuroscience and Behavioral Physiology, 11, 155158.CrossRefGoogle ScholarPubMed
Tebecis, A.K. (1974). Transmitters and identified neurons in the mammal's nervous system. Bristol, UK: Scientechnica.Google Scholar
Tshizhenkova, P.A. (1998). Elektricheskiye sledovye protsessy v populiatsii nevronov sensomotornoy kory [An electrical track processes in neuronal populations of sensorimotor cortex]. Zhurnal uspekhi sovremennoy biologii, 118, 109128.Google Scholar
Vaitl, D., Bauer, U., Schaler, G., Stark, R., Zimmerman, M., & Kirsh, P. (2002). Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophrenia Research, 55, 147158.CrossRefGoogle ScholarPubMed
Varukha, E.A., & Gulyakova, L.A. (1980). Rekonstruktsiya mozaiki vozbuzhdennykh i zatormozhennykh nevronov kory pri vyrabotke tormozheniya zapazdyvatel'nogo refleksa [Reconstruction of an excited and inhibited cortex neurons mosaic by elaboration of delayed reflex inhibition]. Zhurnal vysshey nervnoy deyatelnosti, 30, 420425.Google Scholar
Vein, A.M., Levin, Ya.I., & Tarasov, B.A. (2003). Son i epilepsia [Sleep and epilepsy]. Zhurnal newropatologii i psychiatrii imeni C.C. Korsakova, 103, 7381.Google Scholar
Watanabe, M. (1986). Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. II. Relation to go and no-go responses. Brain Research, 382, 127.CrossRefGoogle ScholarPubMed
Watanabe, S., Konishi, H., & Creutzfeldt, O. (1966). Postsynaptic potentials in the cat's visual cortex following electrical stimulation of afferent pathways. Experimental Brain Research, 1, 272283.CrossRefGoogle ScholarPubMed
Yeo, C.H., Hardiman, M.J., Moore, J.W., & Russel, I.S. (1983). Retention of condition inhibition of the nictitating membrane response in decorticate rabbits. Behavioral Brain Research, 10, 383392.CrossRefGoogle Scholar
Zappone, C.A., & Sloviter, R.S. (2001). Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus: A colocalization study of neuronal markers and the retrograde tracer Fluoro-gold. Journal of Comparative Neurology, 441, 324344.CrossRefGoogle ScholarPubMed