Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:12:25.894Z Has data issue: false hasContentIssue false

Reduced Electroencephalographic Coherence Asymmetry in the Chernobyl Accident Survivors

Published online by Cambridge University Press:  10 April 2014

Ludmila A. Zhavoronkova*
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (Russia)
Nina B. Kholodova
Affiliation:
Rentgenoradiological Centre, Ministry of Health of the Russian Federation (Russia)
Alexey P. Belostocky
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (Russia)
Mikhail A. Koulikov
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (Russia)
*
Correspondence concerning this article should be addressed to Ludmila A. Zhavoronkova, Institute of Higher Nervous Act. & Neurophysiology RAS, Butlerov str. 5a, 117485 Moscow, Russia. Work phone: +7-499- 97-85-59. Fax: +7-495-338-85-00. E-mail: Lzhavor@nsi.ru

Abstract

An electroencephalograph (EEG) study was carried out from 1990 to 2006, using power spectra, averaged coherence, and integral EEG coherence asymmetry coefficients to compare 189 clean-up workers of the Chernobyl accident with 63 age-matched healthy controls. Most of the Chernobyl workers showed three abnormal EEG patterns, as indicated by EEG power mapping. The higher power, most prominent in slow alpha and theta bands, or in fast alpha frequencies, were observed in persons 3-5 years after the clean-up works (the early stage). The lower EEG power in alpha band was found in Chernobyl workers 10 or more years after the accident (the late stage). EEG coherence analysis revealed the existence of two stages in EEG alterations following the Chernobyl clean-up. In the early stage, an increase of EEG coherence in the central brain areas was observed, whereas at the later stage, a decrease of EEG coherence, most prominent in the frontal brain areas, and reduced brain asymmetry prevailed. These results allow us to propose that the described EEG signs may be a reflection of radiation-induced brain dysfunction at the late period after the Chernobyl clean-up and were similar to the EEG markers of brain ageing. The results, in comparison to data of the literature, provide additional support to the premature brain ageing hypothesis in Chernobyl survivors as a result of the radiation brain damage after-effect.

Se llevó a cabo un estudio electroencefalográfico (EEG) desde 1990 a 2006, empleando los espectros de energía, la coherencia promediada y los coeficientes integrales de asimetría de coherencia de EEG para comparar 189 trabajadores que participaron en la limpieza después del accidente de Chernobyl con un grupo control de 63 individuos sanos de la misma edad. La mayoría de los trabajadores de Chernobyl mostraron tres patrones anormales de EEG, como indica el mapeo de energía del EEG. La energía más alta, más prominente en las bandas lentas alfa y theta (1) o en frecuencias rápidas alfa (2), se observó en personas estudiadas 3 a 5 años después de los trabajos de limpieza (la fase temprana). La energía en el EEG más baja, en la banda alfa (3), se encontró en los trabajadores de Chernobyl 10 años o más después del accidente (la fase tardía). El análisis de coherencia del EEG reveló la existencia de dos fases en las alteraciones del EEG después de la limpieza de Chernobyl. En la fase temprana, se observó un incremento de la coherencia del EEG en las áreas centrales del cerebro, mientras que en la fase tardía, se observó una reducción de la coherencia del EEG, más prominente en las áreas frontales del cerebro, y prevaleció la reducción de la asimetría del cerebro. Estos resultados nos permiten proponer que los signos EEG descritos pueden ser un reflejo de disfunción cerebral inducida por radiación en la fase tardía después de la limpieza de Chernobyl y que son similares a los marcadores EEG del envejecimiento del cerebro. Los resultados, en comparación con los datos de la literatura, proporcionan apoyo adicional a la hipótesis del envejecimiento cerebral prematuro del cerebro en los supervivientes de Chernobyl como resultado del efecto secundario de lesiones cerebrales por radiación.

Type
Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alishev, N.V., Svistov, A.S., Ryzhman, N.N., Drabkin, B.A., Vashkevich, A.A., & Nikolaeva, N.A. (2006). Indeksy biologicheskogo vozrasta ran'negostarenia likvidatorov posledstvii radiacionnih katastrof [The indices of biological age and accelerated aging in the liquidators of the consequences of radiation emergency]. Adv. Gerontology, 18, 110124.Google Scholar
Boldyreva, G.N. (2000). Electricheskaja aktivnost' mozga cheloveka pri porazhenii diencefal'nih i limbicheskih struktur [Electrical activity of human brain in lesions of the diencephalic and limbic structures] Moscow: Nauka.Google Scholar
Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., & Dobronravova, I.S. (2007). Electroencephalographic intarcentral interaction as a reflection of normal and pathological human brain activity. Spanish Journal of Psychology, 10, 167177.CrossRefGoogle ScholarPubMed
Bragina, N.N., & Dobrokhotova, T.A. (1988). Funkcional'naja asimmetria i psihopatologia pri fokal'nih povrezhdenjah mozga [Functional asymmetry and psychopathology of the focal brain lesions]. Moscow: Meditsina.Google Scholar
Burlakova, E. (2006). Scientific principles of the damaging effect of radiation on the state of health of the general population. Abstracts of International Congress: Chernobyl — 20 years later. Berlin. ECRR European Committee on Radiation Risk, 2729.Google Scholar
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychological Aging, 17, 85100.CrossRefGoogle ScholarPubMed
Comi, G., & Leocani, L. (1999). Neurophysiological imaging techniques in dementia. Italian Journal of Neurological Science, 20, S265S269.CrossRefGoogle ScholarPubMed
Crow, T.J. (2005). Losses and reversals of asymmetry in schizophrenia as studied in post-mortem brain. World Journal of Biological Psychiatry, 6, 58.Google Scholar
Davidov, B.I., Ushakov, B.I., & Fedorov, V.P. (1991). Irradiation damage of the brain. Moscow: Energoizdat (Russian).Google Scholar
Duffy, F.H., & Albert, M.S. (1984). Age-related differences in brain electrical activity of healthy subjects. Annals of Neurology, 16, 430438.CrossRefGoogle ScholarPubMed
Dunkin, J.J., Leuchter, A.F., Newton, T.F., & Cook, I.A. (1994). Reduced EEG coherence in dementia: State or trait marker? Biological Psychiatry, 35, 870879.CrossRefGoogle ScholarPubMed
French, C.C, & Beaumont, J.G. (1984). A critical review of EEG coherence studies of hemispheric function. International Journal of Psychophysiology, 1, 241254.CrossRefGoogle Scholar
Gluzman, D.F., Imamura, N., Sklyarenko, L.M., Nagornaya, V.A., Zavelevich, M.P., & Simolet, M.L. (2006). Leukemias in cleanup workers diagnosed in the Ukrainian reference laboratory in 1996–2005: Different biological forms and their relative distribution. Abstracts of International Congress: Chernobyl — 20 years later. Berlin. ECRR European Committee on Radiation Risk, 5354.Google Scholar
Kholodova, N.B., Ryzhov, B.N., & Zhavoronkova, L.A. (2005). Narushenija visshih psihicheskih funkcii u Cherbil'skih likvidatorov [Disorders of higher mental functions in Chernobyl liquidators]. Zhurnal Nevropathol. Psykhiat.r Im. S.S. Korsakova, 105, 5758.Google Scholar
Kholodova, N.B., Zhavoronkova, L.A., Ryzhov, B.N., & Kuznetsova, G.D. (2007). Pezhdevremennoe starenie organizma I osobennosti ego projavlenija v ottdalennie sroki posle obluchenija malimi dozami [Preliminary aging of the organism and its development at the late period after exposure to low doses]. Dostishenija Gerontologii, 19, 4855.Google Scholar
Kimeldorf, D., & Hant, E. (1969). Deistvie ioniziruyuschei radiacii na funkcii nervnoi sistemi [Effect of ionizing radiation on the nervous system]. Moscow: Pease.Google Scholar
Klass, D.W., & Brenner, R.P. (1995). Electroencephalography of the elderly. Journal of Clinical Neurophysiology, 12, 116131.CrossRefGoogle ScholarPubMed
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169195.CrossRefGoogle ScholarPubMed
Knyazeva, M.G., & Innocenti, G.M. (2001). EEG coherence study in the normal brain and after early-onset cortical pathology. Brain Research Review, 36, 119128.CrossRefGoogle Scholar
Livanov, M.N. (1961). Nekotorie problemi deistviya ioniziruyuschei radiacii [Some aspects of ionizing radiation effect]. Moscow: Medicine.Google Scholar
Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., & Comi, G. (1998). EEG coherence in Alzheimer's disease. Electroencephalograpy and Clinical Neurophysiology, 106, 229237.CrossRefGoogle ScholarPubMed
Loganovsky, K.N., & Loganovskaja, T.K. (2000). At issue: Schizophrenia spectrum disorders in persons exposed to ionizing radiation as a result of Chernobyl accident. Schizophrenia Bulletin, 26, 751773.CrossRefGoogle Scholar
Loganovsky, K.N., & Yuryev, K.L. (2001). EEG patterns in persons exposed to ionizing radiation as a result of the Chernobyl accident: Part 1: Conventional EEG analysis. Journal of Neuropsychiatry and Clinical Neurosciences, 13, 441458.CrossRefGoogle ScholarPubMed
Loganovsky, K.N., & Yuryev, K.L. (2004). EEG patterns in persons exposed to ionizing radiation as a result of the Chernobyl accident: Part 2: Quantitative EEG analysis in patients who had acute radiation sickness. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 7082.CrossRefGoogle ScholarPubMed
Lopez da Silva, F.H. (1991). Neural mechanisms underlying brain waves: From neural membranes to networks. Electroencephalograpy and Clinical Neurophysiology, 79, 8189.CrossRefGoogle Scholar
Marciani, M.G., Maschio, M., Spanedda, F., Galtagirone, C., Gigli, G.L., & Bernardi, G. (1994). Quantitative EEG evaluation in normal elderly subjects during mental processes: Age-related changes. International Journal of Neuroscience, 76, 131140.CrossRefGoogle ScholarPubMed
Marosi, E., Harmony, T., Sanchez, L., Bernal, J., Reyes, A., Deleon, A.E.D., Rodriguez, M., & Fernandez, T. (1992). Maturation of the coherence EEG activity in normal learning disabled children. Electroencephalograpy and Clinical Neurophysiology, 83, 350357.CrossRefGoogle ScholarPubMed
Meshkov, H.A., Rychov, N.I., Kuznetsova, G.D., Shlyk, G.G., Zhavoronkova, L.A., & Kholodova, N.B. (1993). Ottadlennie posledstvia vozdeistbija radiacii na nevrologichesakii status [Late consequences of irradiation influences on neurological status]. Voenno-Medistinskii Zhurnal, 4, 773.Google Scholar
Michelogianis, S., Paritsis, N., & Trikas, P. (1991). EEG coherence during hemispheric activation in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 24, 3134.CrossRefGoogle Scholar
Mickley, G.A. (1987). Psychological effects of nuclear warfare. In Conklin, J.J. & Walker, R.I. (Eds.), Military radiobiology (pp. 303319). San Diego, CA: Academic Press.Google Scholar
Mironov, V., Tretyakevich, S., & Zhuravkov, V. (2006). Thyroid doses and radiation risk of thyroid cancer for inhabitants of Belarus following the accident in the Chernobyl NPP. Abstracts of International Congress: Chernobyl – 20 years later. Berlin. ECRR European Committee on Radiation Risk, 6667.Google Scholar
Nagase, Y., Okubo, Y., Matsura, M., Kojima, T., & Toru, M. (1992). EEG coherence in unmedicated schizophrenia patients — topographic study of predominantly never medicated cases. Biological Psychiatry, 32, 10281034.CrossRefGoogle ScholarPubMed
Newton, T.F., Leuchter, A.F., & Miller, H. (1994). Quantitative EEG in patients with AIDS and asymptomatic HIV infection. Clinical Electroencephalography, 25, 1825.CrossRefGoogle ScholarPubMed
Nunez, P. L. (1981). Electric fields of the brain: The neurophysics of EEG. New York: Oxford University Press.Google Scholar
Nyagu, A.I., Noschenko, A.G., & Loganovsky, K.N. (1992). Ottdalennie posledstvija psikhogennogo i radiazionnogo faktorov avarii na Chernobylskoi AES na funkcional'noe sostojanie golovnogo mozga cheloveka [Long-term consequences of psychogenic and radiation factors of the Chernobyl accident in the functional state of the human brain]. Zhurnal Nevropathologii i Psykhiatrii Im. S.S. Korsakova, 92, 7278.Google Scholar
Nyagu, A.I., Loganovsky, K.N., & Chuprovskaja, N.Yu. (1997). Postradiazionnaja encefalopatija v otdalennii period ostroi luchevoi bolezni [Postradiation encephalopathy at the remote period of acute radiation sickness]. Ukrainian Medical Journal, 2, 3344.Google Scholar
Nyagu, A.I., Loganovsky, K.N., & Yuryev, K.L. (1999). Psychophysiological aftermath of irradiation. Journal of Radiation Medicine, 2, 324.Google Scholar
Petsche, H. (1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. International Journal of Psychophysiology, 24, 145159.CrossRefGoogle ScholarPubMed
Pierce, T.W., Kelly, S.P., Watson, T.D., Replogle, D., King, J.S., & Pribram, K.H. (2000). Age differences in dynamic measure of EEG. Brain Topography, 13, 127134.CrossRefGoogle ScholarPubMed
Ponomareva, N.V., Mitrofanova, A.A., Androsova, L.V., & Pavlova, O.A. (2007). Vlijanie stressa na mezhpolusharnoe vzaimodeistvie pri nomal'nom starenii i bolezni Alzheimera. [Influence of stress on the interhemispheric interaction during normal ageing and in patients with Alzheimer's disease]. Journal of Asymmetry, 1, 2026Google Scholar
Ponamareva, N.V., Selesneva, N.D., Jarikov, G.A. (2003). EEG alterations in subjects at high familial risk for Alzheimer's disease. Pharmacoencephalography, 48, 152159.Google Scholar
Rappelsberger, P., & Petsche, H. (1988). Probability mapping: Power and coherence analyses of cognitive processes. Brain Topography, 1, 4654.CrossRefGoogle ScholarPubMed
Rudolf, M., Jakisch, D., & Volke, H.J. (1996). Factoren- und diskriminanzanalitische Auswergtung komponentenbezogener Koharenzen des EEG zur Fruherkennung neurotoxischer Schadigungen [Factor and discriminant analysis of coherence-related EEG parameters for ditection of neurotoxin impairment]. EEG-EMG Zeitschrift fur Elektroenzephalografie, Elektromyografie und verwandte Gebiete, 28, 96102.Google Scholar
Rusinov, V.S., Grindel, O.M., Bodyreva, G.N., & Vakar, E.M. (1987). Biopotencialy mozga cheloveka. Matematicheskii analiz [Biopotentials of the human brain. Mathematical analysis] Moscow: Meditsina.Google Scholar
Sachdev, P.S. (2004). The cognitive profile of vascular cognitive impairment. Abstracts of 5th International Congress of Neuropsychiatry, Athens, 17.Google Scholar
Sharova, E.V. (1999). Adaptivno-kompensatornie perestroika bioelecticheskoi aktivnosti mozga cheloveka pri povrezhdenii stvolovih obrazovanii [The adaptive—compensatory reorganizations of the human brain's bioelectrical activity at brainstem damage]. Summary of doctoral dissertation. Moscow: Institute of Higher Nervous Activity and Neurophysiology RAS.Google Scholar
Szeilies, B., Mielke, R., Herholz, K., & Heiss, W.-D. (1994). Quantitative topographic EEG compared to FDG PET for classification of vascular and degenerative dementia. Electroencephalography and Clinical Neurophysiology, 91, 131139.CrossRefGoogle Scholar
Thatcher, R.W. (1994). Cyclic cortical reorganization, origins of human cognitive development. In Dawson, G. & Fisher, K. (Eds.), Human behaviour and the development brain (pp. 232266). New York: Guilford Press.Google Scholar
Tucker, D.M., Roth, D.L., & Bait, T.B. (1986). Functional connections among cortical regions: Topography of EEG coherence. Electroencephalography and Clinical Neurophysiology, 63, 242250.CrossRefGoogle ScholarPubMed
Yaar, I., Ron, E., & Modan, B. (1982). Long-lasting cerebral functional changes following moderate dose X-radiation treatment to the scalp in childhood: An EEG power spectral study. Journal of Neurology, Neurosurgery & Psychiatry, 45, 166169.CrossRefGoogle Scholar
Zhavoronkova, L.A. (2006) Parvshi-levshi: mezhpolusharnaja asymmetrija eletricheskoi aktivnosty mozga cheloveka [Righthanders and left-handers: Interhemispheric asymmetry of the human brain electrical activity. Moscow: Nauka.Google Scholar
Zhavoronkova, L.A., Gogitidze, N.V., & Kholodova, N.B. (1999). Longitudinal EEG coherence and neuropsychological examination of the brain functional state in dextral and sinistral Chernobyl patients. Neuroimage, 10, A59.Google Scholar
Zhavoronkova, L.A., Kholodova, N.B., Zubovsky, G.A., Gogitidze, N.V., & Koptelov, Yu.M. (1995). EEG power mapping, dipole source and coherence analysis in Chernobyl patients. Brain Topography, 8, 161168.CrossRefGoogle ScholarPubMed
Zhavoronkova, L.A., Kholodova, N.B., Zhubovsky, G.A., Smirnov, Yu.N., Koptelov, Yu.M., & Ryzhov, N.I. (1995). Electroencephalographic correlates of neurological disturbances at remote period of the effect of ionizing radiation (sequel of the Chernobyl NPP Accident). Neuroscience and Behavioral Physiology, 25, 142150.CrossRefGoogle Scholar
Zhavoronkova, L.A., Lavrova, T.P., Belostotskii, A.V., Kholodova, N.B., Skoriatina, I.G., & Voronov, V.P. (2006). Posradiacionnie narushenija regionarno-chastotnkh kharakteristik kogerentnosti EEG pri kognitivnoi dejanel'nosti (posledsvija avarii na Cherbilskoi AES). [Impairment of space-frequency parameters of EEG coherence during cognitive performance (consequences of Chernobyl accident)]. Zh Vyssh Nerv Deiat Im I P Pavlova, 56, 193201.Google Scholar
Zubovsky, G.A., & Kholodova, N.B. (1993). Neurological status of subjects who participated in liquidation of the Chernobyl power plant accident consequences. Journal of Med. Radiology, 38, 3134.Google Scholar