No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
The galactic globular clusters presumably formed rapidly as high density concentrations at the centres of extensive star forming regions and the natural expectation is that they will be chemically homogeneous. In general, this is confirmed by observation — most globular clusters are extremely homogeneous with regard to most elements. (There are two exceptions: ω Cen and M22 both have intrinsic internal abundance ranges. While of considerable interest, e.g. Norris et al. 1996, this type of “abundance anomaly” will not be discussed here). But we have known for more than twenty years that the surface abundances, which are what we observe, of elements such as C, N and O can vary substantially from red giant to red giant within an individual globular cluster. Indeed it has become clear that “abundance anomalies” of this type are common in the galactic globular cluster population. Briefly, the observed anomalies can be summarized as: (i) the “anomalous” stars are depleted in C and enhanced in N. Depletions of O also often accompany the depletions in C. (ii) The C, N and O variations are usually accompanied by enhancements of Na and Al and when the O depletion and the Al enhancement are both large, Mg is depleted. No other elements, including r- and s-process indicators, vary.