No CrossRef data available.
Article contents
The Chemical Evolution of Light Elements in Our Galaxy
Published online by Cambridge University Press: 19 July 2016
Extract
Progress in the theory of galactic chemical evolution has been very slow and it is only in the solar neighborhood that observations constrain seriously the parameters of the various models. The history revealed on the basis of these data allows only for a small depletion of deuterium (D), less than a factor of 3 from its pregalactic value (Sec. 2.1). The observational data for the rest of the Milky Way disk are much less constraining for the models. They suggest, however, that a much larger astration (and, hence, D depletion) has taken place in the inner Galaxy; the resulting D gradient, measurable by the future FUSE-LYMAN mission, should provide invaluable information as to the past history of the disk (Sec. 2.2). Also, assuming that our Galaxy is a typical spiral, one can calculate the properties of disk galaxies as a function of redshift (in the framework of a given cosmological model) and compare to the observed properties of the extragalactic universe: global star formation rate, gas content and metal abundances in gas clouds. It turns out that D can be considerably depleted in galaxy disks, but only at low redshifts (Sec. 2.3).
- Type
- Conference Papers in order of Presentation
- Information
- Symposium - International Astronomical Union , Volume 187: Cosmic Chemical Evolution , 2002 , pp. 47 - 56
- Copyright
- Copyright © 2002