Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T02:39:56.119Z Has data issue: false hasContentIssue false

Chemistry in the Early Universe

Published online by Cambridge University Press:  04 August 2017

A. Dalgarno
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts, USA
S. Lepp
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical processes which led to the formation of molecules in the early universe are described. Molecular hydrogen is formed by two sequences. in one, radiative attachment to form H is followed by associative detachment and in the other radiative association to form H2+ is followed by a chemical reaction with H. Trace amounts of HD and the molecular ion LiH+ are formed by the reaction of D+ with H2 and by the radiative association of Li+ and H. The H2 molecular fraction in the expanding universe is about 10−6.

Because they are cooling agents, hydrogen molecules are significant in the collapse of pre-galactic clouds. With increasing density the hydrogen gas is converted to molecular hydrogen by three-body recombination and emission from the rotational and vibrational levels cools the cloud and slows the rise in temperature of the gravitationally collapsing object. Ultimately though, the radiation is trapped and the temperature rises. The H2 molecules are then destroyed by collision-induced dissociation. At still higher temperatures collisional ionization occurs, initiated most probably by the process of associative ionization.

Molecules may be significant also in galaxy formation if the explosive amplification model is correct. Heavy elements may be present in the shell of gas swept up by the blast waves of the exploded seed galaxies and chemical processes leading to the formation of molecular hydrides may take place, in a scenario analogous to the aftermath of an interstellar dissociative shock.

Type
Early Universe
Copyright
Copyright © Reidel 1987 

References

Allison, A.C. and Dalgarno, A. 1970 Atomic Data Tables 1, 289.CrossRefGoogle Scholar
Allison, A.C. and Dalgarno, A. 1969a Atomic Data Tables 1, 91.CrossRefGoogle Scholar
Allison, A.C. and Dalgarno, A. 1969. J. Geophys. Res. 74, 4178.Google Scholar
Argyros, J.D., 1974 J. Phys. B 7, 2025.CrossRefGoogle Scholar
Bates, D.R. and Lewis, J.T. 1955 Proc. Phys. Soc. A 68, 173.CrossRefGoogle Scholar
Bates, D.R. 1952 Mon. Not. Roy. Astron. Soc. 112, 40.CrossRefGoogle Scholar
Bertschinger, E. 1983 Ap. J. 268, 17.CrossRefGoogle Scholar
Bieniek, R. 1980 J. Phys. B. 13, 4405.CrossRefGoogle Scholar
Bieniek, R.J. and Dalgarno, A. 1979 Ap. J. 228, 635.CrossRefGoogle Scholar
Black, J.H. and Dalgarno, A. 1973 Ap. J. Lett. 184, 401.CrossRefGoogle Scholar
Broad, J.T. and Reinhardt, W.P. 1976 Phys. Rev. A 14, 2159.CrossRefGoogle Scholar
Browne, J.C. and Dalgarno, A. 1969 J. Phys. B. 2, 885.CrossRefGoogle Scholar
Bryant, H.C., Butterfield, K.B., Clark, D.A., Frost, C.A., Donahue, J.B., Grau, P.A.M., Hamin, M.E., Hamin, R.W., and Smith, W.W., 1981 Atomic Physics 7 (Plenum: New York) Ed. Kleppner, D. and Pipkin, F.M. Google Scholar
Buckingham, R.A., Reid, S. and Spence, R. 1952 Mon. Not. Roy. Astron. Soc. 112, 382.CrossRefGoogle Scholar
Dalgarno, A. and Kingston, A.E. 1963 Observatory 83, 932.Google Scholar
Dalgarno, A. and Roberge, W.G. 1979 Ap. J. Lett. 233, L25.CrossRefGoogle Scholar
Dalgarno, A. and Wright, E.L. 1972 Ap. J. Lett. 174, 649.CrossRefGoogle Scholar
Dalgarno, A., Weisheit, J.C., and Black, J.H. 1973 Astrophys. Lett. 14, 77.Google Scholar
Dastidar, , Rai, K., and Dastidar, , Rai, T.K., 1979 J. Phys. Soc. Japan 46, 1288.CrossRefGoogle Scholar
de Jong, T. 1972 Astr. Ap. 20, 263.Google Scholar
Derkits, C., Bardsley, J.N. and Wadehra, J.M. 1979 J. Phys. B 12, L529.CrossRefGoogle Scholar
Doughty, N.A. and Fraser, P.A. 1964 Atomic Collision Processes (North Holland: Amsterdam) p. 527.Google Scholar
Drawin, H.W. 1969 Zs. Phys. 225, 483.CrossRefGoogle Scholar
Dunn, G.H. 1968 Phys. Rev. 172 Google Scholar
Fehsenfeld, F.C., Albritton, D.L., Bush, Y.A., Fourier, P.G., Gover, T.R. and Fourier, J. 1974 J. Chem. Phys 61, 2150.CrossRefGoogle Scholar
Fehsenfeld, F.C., Durkin, D.B., Ferguson, E.E. and Albritton, D.L. 1973 Ap. J. Lett. 183, L25.CrossRefGoogle Scholar
Giusti-Suzor, A., Bardsley, N.N. and Derkits, C., 1983 Phys. Rev. A 28, 682.CrossRefGoogle Scholar
Glass-Maujean, M. 1986 Phys. Rev. A 33, 342.CrossRefGoogle Scholar
Glass-Maujean, M., Guyon, P.M. and Breton, J. 1986 Phys. Rev. A 33, 346.CrossRefGoogle Scholar
Henchman, M.M., Adams, N.G. and Smith, D. 1981 J. Chem. Phys. 75, 1201.CrossRefGoogle Scholar
Hirasawa, T. 1969 Prog. Theor. Phys. 42, 523.CrossRefGoogle Scholar
Ikeuchi, S. 1981 Publ. Astron. Soc. Japan 33, 211.Google Scholar
Karpas, Z., Anicich, V., and Huntress, W.T. 1979 J. Chem. Phys. 70, 2877.CrossRefGoogle Scholar
Lepp, S., Dalgarno, A. and Shull, J.M. 1986, Ap. J. in press.Google Scholar
Lepp, S. and Shull, J.M. 1984 Ap. J. 280, 465.CrossRefGoogle Scholar
Lepp, S. and Shull, J.M., 1983 Ap. J. 270, 578.CrossRefGoogle Scholar
Maclow, M. and Shull, J.M. 1986, Ap. J in press.Google Scholar
McDowell, M.R.C. 1961 Observatory 81, 240.Google Scholar
Moseley, J.T., Aberton, W. and Peterson, J.F. 1970 Phys. Rev. Lett. 24, 435.CrossRefGoogle Scholar
O'Donnell, E.J. and Watson, W.D. 1974 Ap. J. 191, 89.CrossRefGoogle Scholar
Ostriker, J.P. and Cowie, L.L. 1981 Ap. J. Lett. 243, L127.CrossRefGoogle Scholar
Palla, F., Salpeter, E.E. and Stahler, S.W. 1983, Ap. J. 271, 632.CrossRefGoogle Scholar
Peart, B., Bennett, M.A. and Dolder, K. 1985 J. Phys. B 18, L439.CrossRefGoogle Scholar
Ramaker, D.E. and Peek, J.M. 1966 Phys. Rev. A. 13, 58.CrossRefGoogle Scholar
Roberge, W.G. and Dalgarno, A. 1982 Ap. J. 255, 176.CrossRefGoogle Scholar
Roberge, W.G. and Dalgarno, A. 1982 Ap. J. 255, 489.CrossRefGoogle Scholar
Saslaw, W. and Zipoy, D. 1967 Nature 216, 976.CrossRefGoogle Scholar
Silk, J. 1983 Mon. Not. Roy. Astron. Soc. 205, 705.CrossRefGoogle Scholar
Silk, J. 1985, Ap. J. 297, 1.CrossRefGoogle Scholar
Schmeltekopf, A., Fehsenfeld, F.C. and Ferguson, E.E. 1967 Ap. J. Lett. 148, L155.CrossRefGoogle Scholar
Smith, D., Adams, N.G. and Alge, E. 1982 Ap. J. 263, 123.CrossRefGoogle Scholar
Stephens, T.L. and Dalgarno, A. 1970 Ap. J. Lett. 160, L107.Google Scholar
Stewart, A.L. 1978 J. Phys. B 11, 3851.CrossRefGoogle Scholar
Szucs, S., Karemara, M., Terao, M. and Brouillard, F.J., 1984 Phys. B 17 1613.CrossRefGoogle Scholar
Vishniac, E.T., Ostriker, J.P. and Bertschinger, E. 1985 Ap. J 29, 399.CrossRefGoogle Scholar
Wandel, A. 1985 Ap. J. 294, 385.CrossRefGoogle Scholar
Wadehra, J.M. 1984 Phys. Rev. A 29, 106.CrossRefGoogle Scholar
Watson, W.D., Christensen, R.B. and Deissler, R.J. 1978 Astr. Ap. 69, 159.Google Scholar
Wishart, A.W. 1979 Mon. Not. Roy. Astron. Soc. 187, 50P.CrossRefGoogle Scholar
Yoshii, Y. and Sabano, Y. 1979 Publ. Astron. Soc. Japan 31, 505.Google Scholar
Zhandanov, V.P. 1980 J. Phys. B 13, L311 CrossRefGoogle Scholar
Zhandanov, V.P. and Chibisov, M.I. 1978 Sov. Phys.-JETP 47, L529.Google Scholar