Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T21:29:00.239Z Has data issue: false hasContentIssue false

Do Massive Neutrinos Ionize Intergalactic HI?

Published online by Cambridge University Press:  25 May 2016

M. Roos
Affiliation:
High Energy Physics Laboratory, POB 9, FIN-00014 University of Helsinki, Finland
S. Bowyer
Affiliation:
Center for EUV Astrophysics, 2150 Kittredge, University of California, Berkeley, CA 94720
M. Lampton
Affiliation:
Center for EUV Astrophysics, 2150 Kittredge, University of California, Berkeley, CA 94720
J. T. Peltoniemi
Affiliation:
International School for Advanced Studies, Via Beirut 2-4, 34013 Trieste, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The radiative decay of massive relic 30eV neutrinos could explain several observational puzzles including the missing dark matter in the universe and the anomalous degree of ionization of interstellar matter in the Galaxy. We note that various non-standard particle physics models with extended scalar sector or minimal supersymmetry have sufficient freedom to accommodate such neutrinos. We discuss observational constraints in the immediate Solar neighborhood, in nearby regions of low interstellar absorption, in the Galactic halo, in clusters of galaxies, and in extragalactic space. Although some observations have been interpreted as ruling out this picture, we note that this is true only for models in which extreme concentrations of neutrinos occur in clusters of galaxies. An instrument is under development to measure the cosmic diffuse EUV background in the local Solar neighborhood, for flight on the Spanish Minisat satellite platform. This instrument will have the capability of providing a definitive test of the radiative neutrino decay hypothesis.

Type
Part II: Contributed Papers
Copyright
Copyright © Kluwer 1996 

References

1. Gunn, J. E. and Peterson, B. A., Astrophys. J. 142 (1965) 1633.CrossRefGoogle Scholar
2. Rephaeli, Y. and Szalay, A. S., Phys. Lett. B 106B (1981) 73.CrossRefGoogle Scholar
3. Sciama, D. W., Mon. Not. R. Astron. Soc. 198 (1982) 1P.CrossRefGoogle Scholar
4. Melott, A. L. et al., Astrophys. J. 324 (1988) L43, ibid 421 (1994) 16.CrossRefGoogle Scholar
5. Sciama, D. W., Nature 346 (1990) 40; Astrophys. J. 364 (1990) 549; Comments Astrophys. Space Phys. 15 (1990) 71; Phys. Rev. Lett. 65 (1990) 2839.CrossRefGoogle Scholar
6. Montanet, L. et al., (Particle Data Group), Phys. Rev. D 50 Part II (1994) I.1.Google Scholar
7. Schechter, J. and Valle, J. W. F., Phys. Rev. D 24 (1981) 1883.CrossRefGoogle Scholar
8. Fukugita, M. and Yanagida, T., Phys. Rev. Lett. 58 (1987) 1807.CrossRefGoogle Scholar
9. Babu, K. S. and Mathur, V. S., Phys. Lett. B 196 (1987) 218.CrossRefGoogle Scholar
10. Zee, A., Phys. Lett. 93B (1980) 389.CrossRefGoogle Scholar
11. Bowyer, S., Lampton, M., Peltoniemi, J. T., and Roos, M. (in preparation, 1994).Google Scholar
12. Holberg, J., and Barber, H. B., Astrophys. J. 292 (1985) 16.CrossRefGoogle Scholar
13. Kimble, R., Bowyer, S., and Jakobsen, P., Phys. Rev. Lett. 46 (1981) 80.CrossRefGoogle Scholar
14. Martin, C., Hurwitz, M., and Bowyer, S., Astrophys. J. 379 (1991) 549.CrossRefGoogle Scholar