Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:36:02.422Z Has data issue: false hasContentIssue false

The Evolutionary Status of PSR 1718–19

Published online by Cambridge University Press:  25 May 2016

Ene Ergma
Affiliation:
Physics Department, Tartu University, Ulikooli 18, EE2400 Tartu, Estonia
Marek J. Sarna
Affiliation:
N. Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Possible models for the matter source inside the eclipsing binary system PSR 1718–19, and for the evolution of this system are reviewed, including Zwitter's (1993) stripped main-sequence (MS) turnoff star model. Both the accretion induced collapse (AIC) scenario with a young neutron star, and the capture scenario with an old neutron star are discussed. Although Burderi & King (1994) claim that the size of the Roche lobe (∼0.5 R) unambiguously rules out the AIC formation scenario, we show that in our evolutionary picture an AIC scenario will be possible.

Type
1 Binary Evolution
Copyright
Copyright © Kluwer 1996 

References

Burderi, L. & King, A.R. 1994, ApJ 430, L57.Google Scholar
Dewey, R.J. & Cordes, J.M. 1987, ApJ 321, 780.Google Scholar
Ergma, E. 1991, Comments on Astrophys. 15, 239.Google Scholar
Ergma, E. 1993, A&A 273, L38.Google Scholar
Ergma, E., Sarna, M.J. & Giersz, M. 1994, (in preparation).Google Scholar
Hertz, P. & Grindlay, J. 1983, ApJ 273, 105.CrossRefGoogle Scholar
Hills, J. 1976, MNRAS 175, 1P.CrossRefGoogle Scholar
Levine, A. et al. 1988, ApJ 327, 732.CrossRefGoogle Scholar
Livio, M. 1992, in Interacting Binaries , Nussbaumer, H. & Orr, A. (Eds.), Springer Verlag (Berlin), p. 250.Google Scholar
Lyne, A., Biggs, J., Harrison, P. & Bailes, M. 1993, Nat 361, 47.Google Scholar
Muslimov, A.G. & Sarna, M.J. 1993, MNRAS 262, 164.CrossRefGoogle Scholar
Pryor, C. & Meylan, G. 1993, ESO preprint No. 932.Google Scholar
Rappaport, S. & Di Stefano, R. 1993, in Cataclysmic Variables and Related Physics , 2nd Technion Haifa Conf., Regev, O. & Shaviv, G. (Eds.), Israel Phys. Soc. (Jerusalem), p. 48.Google Scholar
Shara, M.M., Bergeson, L.E. & Moffat, A.F.J. 1994, ApJ 429, 767.CrossRefGoogle Scholar
Truran, J.W. et al. 1988, ApJ 324, 345.Google Scholar
Tutukov, A.V. et al. 1985, SvAL 11, 52.Google Scholar
Verbunt, F. 1994, A&A 285, L21.Google Scholar
Verbunt, F. & Meylan, G. 1988, A&A 203, 297.Google Scholar
Wijers, R. & Paczynski, B. 1993, ApJ 415, L115.CrossRefGoogle Scholar
Woosley, S.E. & Baron, E. 1992, ApJ 391, 228.Google Scholar
Zeldovich, Ya. & Novikov, I.D. 1971, Relativistic Astrophysics, Vol. 1, Stars and Relativity, University of Chicago Press.Google Scholar
Zwitter, T. 1993, MNRAS 264, L3.CrossRefGoogle Scholar