Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T17:16:07.015Z Has data issue: false hasContentIssue false

Fast evaluation of ephemerides by polynomial approximation in the Chebyshev norm

Published online by Cambridge University Press:  25 May 2016

J. C. Coma
Affiliation:
Real Instituto y Observatorio de la Armada 11110 San Fernando. Spain
M. Lara
Affiliation:
Real Instituto y Observatorio de la Armada 11110 San Fernando. Spain
T. J. López Moratalla
Affiliation:
Real Instituto y Observatorio de la Armada 11110 San Fernando. Spain

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Normally the planetary and satellite ephemerides are provided in tabular form, where the user interpolates between points in order to obtain the ephemerides. There are other methods of providing ephemerides by means of polynomial representations. The user is supplied with the coefficients of a set of polynomials which allow him a fast ephemerides evaluation.

Type
Part IX - Ephemerides Representation
Copyright
Copyright © Kluwer 1996 

References

1. Barrodale, C.P.: 1975, ACM Trans. Math. Software, 1, 264270.CrossRefGoogle Scholar
2. Deprit, A. and Picard, H.: 1979, Naval Research Laboratory Report 8280.Google Scholar
3. Remez, E.: 1957, General Computation Methods for Chebyshev Approximation, Izdat. Akad. Nauk. Ukranisk SSR, Kiev.Google Scholar
4. Schmitt, H.: 1971, Discrete Chebyshev curve fit , Comm. ACM 14, 355357.Google Scholar
5. Stiefel, E.L.: 1958, Numerical Methods of Chebyshev Approximation, on Numerical Approximation, Langer, R. (Ed.), U. Winsconsin, pp. 217232.Google Scholar
6. Valleé-Poussin, C. de la.: 1919, Leçons sur l'approximation des fonctions d'une variable réelle, Paris Gauthier-Villars, p. 75.Google Scholar