Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T06:02:08.128Z Has data issue: false hasContentIssue false

General Theory for the Outer Planets

Published online by Cambridge University Press:  07 August 2017

P. Bretagnon
Affiliation:
Bureau des Longitudes, URA 707 CNRS, 77 av. Denfert-Rochereau, 75014 Paris, France
G. Francou
Affiliation:
Bureau des Longitudes, URA 707 CNRS, 77 av. Denfert-Rochereau, 75014 Paris, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An iterative method for the construction of planetary theories has been developed in order to determine the high order perturbations with respect to the masses. These perturbations are indeed needed to enlarge the validity span of analytical theories up to some million years. The application to the simplified Sun-Jupiter-Saturn problem gives a solution accurate over several ten million years. Throughout the study of the four outer planets we meet with convergence difficulties especially in the determination of fundamental frequencies. One of the results of this study is it shows evidence of long period terms with large amplitude in the mean longitudes: 12 000″ in Saturn longitude, 20 000″ in that of Uranus.

Type
Part I - The Planetary System
Copyright
Copyright © Kluwer 1992 

References

Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J., Wisdom, J.: 1986, Astron. J. 92 (1),176.Google Scholar
Bretagnon, P.: 1974, Astron. Astrophys. 30, 141.Google Scholar
Bretagnon, P.: 1982, Astron. Astrophys. 114, 278.Google Scholar
Bretagnon, P.: 1984, in Milankovitch and Climate , Part I, eds. Berger, A.L. et al., Reidel, p.41 Google Scholar
Bretagnon, P.: 1990, Astron. Astrophys. 231, 561.Google Scholar
Bretagnon, P., Simon, J.L.: 1990, Astron. Astrophys. 239, 387.Google Scholar
Chapront, J., Chapront, M., Simon, J.L.: 1974, Astron. Astrophys. 31, 151.Google Scholar
Chapront, J., Bretagnon, P., Mehl, M.: 1975, Celes. Mech. 11, 379.CrossRefGoogle Scholar
Duriez, L.: 1978, Astron. Astrophys. 68, 199.Google Scholar
Duriez, L.: 1979, Approche d'une Théorie Générale Planétaire en variables elliptiques héliocentriques , Thèse, Lille.Google Scholar
Kinoshita, H., Nakai, H.: 1984, Celes. Mech. 34, 203.Google Scholar
Laskar, J.: 1988, Astron. Astrophys. 198, 341.Google Scholar
Laskar, J.: 1990, Icarus 88, 266.CrossRefGoogle Scholar
Milani, A., Nobili, A.M., Carpino, M.: 1987, Astron. Astrophys. 172, 265.Google Scholar
Nobili, A.M., Milani, A., Carpino, M.: 1989, Astron. Astrophys. 210, 313.Google Scholar
Quinn, T.R., Tremaine, S., Duncan, M.: 1991, Astron. J. 101 (6), 2287.CrossRefGoogle Scholar