No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
The potentially important role of jet-cloud interactions in determining the appearance of high-redshift radio galaxies is discussed and investigated via new 3-dimensional simulations of off-axis jet-cloud collisions. The results indicate that the most powerful radio sources are likely to be observed during or shortly after a jet-cloud interaction, and that such interactions can explain both the radio structures and the spatial association between optical and radio light found in powerful radio galaxies at high redshift. It is argued that, due to the radio-power dependence of such complicating effects, the optical-infrared colours and morphologies of very radio-luminous high-redshift galaxies can tell us essentially nothing about their evolutionary state. Either one must study much less radio-luminous sources in which the AGN-induced contamination is minimised, or one must attempt to determine what fraction of the baryonic mass of the radio galaxy has been converted into stars at the epoch of observation. Recent observations aimed at performing the latter experiment on two well-known high-redshift radio galaxies (4C 41.17 & B2 0902+34) are described. It is concluded that at present there exists no clear evidence that either of these famous galaxies is ‘primæval’; on the contrary, the continued low-dispersion of the infrared Hubble diagram at z > 2 points toward a much higher redshift of formation for elliptical galaxies.