No CrossRef data available.
Article contents
How to Model the Chemical Evolution of Galaxies
Published online by Cambridge University Press: 07 August 2017
Extract
For a first interpretation of the comparison of observational data, the crude “Simple Model” of chemical evolution is quite useful. Since it has well been described in the literature (e.g. Pagel and Patchett 1975, Tinsley 1980), let us here just review the assumptions and whether they are satisfied:
-
1. The galaxy is a closed system, with no exchange of matter with its surroundings: For the solar neighbourhood this probably is not true (the infamous Gdwarf-“problem”, Pagel 1989b). For the Magellanic Clouds this is most certainly wrong, because of the presence of the Inter-Cloud Region and the Magellanic Stream, and evidence for interaction with each other and the Galaxy as well (cf. e.g. Westerlund 1990).
-
2. It initially consists entirely of gas (without loss of generality of primordial composition): This is good approximation also for models with gas infall, as long as the infall occurs with a time scale shorter than the star formation time scale.
-
3. The metal production of the average stellar generation (the yield y) is constant with time: Initially, it is reasonable to make this assumption. For tables of the oxygen yield see Koppen and Arimoto (1991).
-
4. The metal rich gas ejected by the stars is completely mixed with the ambient gas. To neglect the finite stellar life times (“instantaneous recycling approximation”) is appropriate for elements synthesized in stars whose life time is much shorter than the star formation time scale, such as oxygen, neon, sulphur, and argon.
-
5. The gas is well mixed at all times: We don't know. The dispersion of H II region abundances may give an indication. In the Magellanic Clouds Dufour (1984) finds quite a low value (±0.08 dex for oyxgen).
- Type
- VI. Planetary Nebulae in Galactic Systems
- Information
- Copyright
- Copyright © Kluwer 1993