Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T19:05:41.677Z Has data issue: false hasContentIssue false

Hypernovae and their nucleosynthesis

Published online by Cambridge University Press:  26 May 2016

Ken'ichi Nomoto
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Keiichi Maeda
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Hideyuki Umeda
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Takuya Ohkubo
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Jingsong Deng
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Paolo Mazzali
Affiliation:
Osservatorio Astronomico, Via G.B. Tiepolo 11, I-34131 Trieste, Italia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the characteristics of nucleosynthesis in ‘hypernovae’, i.e., core-collapse supernovae with very large explosion energies (≳ 1052 ergs). The hypernova yields show the following characteristics: (i) the mass ratio between the complete and incomplete Si burning regions is larger in hypernovae than normal supernovae. As a result, higher energy explosions tend to produce larger [(Zn, Co, V)/Fe] and smaller [(Mn, Cr)/Fe], which could explain the trend observed in very metal-poor stars; (ii) because of enhanced α-rich freeze-out, 44Ca, 48Ti, and 64Zn are produced more abundantly than in normal supernovae. The large [(Ti, Zn)/Fe] ratios observed in very metal poor stars strongly suggest a significant contribution of hypernovae; and (iii) oxygen burning takes place in more extended regions in hypernovae to synthesize a larger amount of Si, S, Ar, and Ca (‘Si’), which makes the ‘Si’/O ratio larger. The abundance pattern of the starburst galaxy M 82 may be attributed to hypernova explosions. We thus suggest that hypernovae make important contribution to the early Galactic (and cosmic) chemical evolution.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Argast, D., Samland, M., Thielemann, F.-K., Gerhard, O.E. 2002, A&A 388, 842.Google Scholar
Audouze, J., Silk, J. 1995, ApJ (Letters) 451, L49.CrossRefGoogle Scholar
Blake, L.A.J., Ryan, S.G., Norris, J.E., Beers, T.C. 2001, Nucl. Phys. A. 688, 502.CrossRefGoogle Scholar
Galama, T.J., Vreeswijk, P.M., van Paradijs, J., et al. 1998, Nature 395, 670.CrossRefGoogle Scholar
Germany, L.M., Reiss, D.J., Saler, E.M., et al. 2000, ApJ 533, 320.CrossRefGoogle Scholar
Hamuy, M. 2002, ApJ submitted.Google Scholar
Hashimoto, M., Nomoto, K., Shigeyama, T. 1989, A&A (Letters) 210, L5.Google Scholar
Hatano, K., Branch, D., Nomoto, K., et al. 2001, BAAS 198, 3902.Google Scholar
Israelian, G., Rebolo, R., Basri, G., et al. 1999, Nature 401, 142.CrossRefGoogle Scholar
Iwamoto, K., Mazzali, P.A., Nomoto, K., et al. 1998, Nature 395, 672.CrossRefGoogle Scholar
Iwamoto, K., Nakamura, T., Nomoto, K., et al. 2000, ApJ 534, 660.CrossRefGoogle Scholar
Kawabata, K.S., Jeffery, D.J., Iye, M., et al. 2002, ApJ (Letters) 580, L39.CrossRefGoogle Scholar
Knop, R., Aldering, G., Deustua, S., et al. 1999, IAU Circular No. 7128.Google Scholar
Leonard, D.C., Filippenko, A.V., Chornock, R., Foley, R.J. 2002, PASP 114, 1333.CrossRefGoogle Scholar
Maeda, K., Nakamura, T., Nomoto, K., et al. 2002, ApJ 565, 405.CrossRefGoogle Scholar
Matheson, T., Filippenko, A.V., Li, W., et al. 2001, AJ 121, 1648.CrossRefGoogle Scholar
Mazzali, P.A., Iwamoto, K., Nomoto, K. 2000, ApJ 545, 407.CrossRefGoogle Scholar
Mazzali, P.A., Nomoto, K., Patat, F., Maeda, K. 2001, ApJ 559, 1047.CrossRefGoogle Scholar
Mazzali, P.A., Deng, J., Maeda, K., Nomoto, K., et al. 2002, ApJ (Letters) 572, L61.CrossRefGoogle Scholar
McWilliam, A., Preston, G.W., Sneden, C., Searle, L. 1995, AJ 109, 2757.Google Scholar
Nakamura, T., Umeda, H., Iwamoto, K., Nomoto, K., Hashimoto, M., Hix, R.W., Thielemann, F.-K. 2001, ApJ 555, 880.CrossRefGoogle Scholar
Nakamura, T., Umeda, H., Nomoto, K., et al. 1999, ApJ 517, 193.CrossRefGoogle Scholar
Nomoto, K., Hashimoto, M., Tusjimoto, T., et al. 1997, Nucl. Phys. A616, 79c.CrossRefGoogle Scholar
Nomoto, K., Mazzali, P.A., Nakmura, T., et al. 2001a, in: Livio, M., Panagia, N. & Sahu, K. (eds.), Supernovae and Gamma Ray Bursts, STScI Symp. Ser. 13 (Cambridge: CUP), p. 144.Google Scholar
Nomoto, K., Maeda, K., Umeda, H., Nakamura, T. 2001b, in: Vanbeveren, D. (ed.), The Influence of Binaries on Stellar Populations Studies (Dordrecht: Kluwer), p. 507.CrossRefGoogle Scholar
Patat, F., Cappellaro, E., Danziger, J., et al. 2001, ApJ 555, 900.Google Scholar
Podsiadlowski, Ph., Nomoto, K., Maeda, K., et al. 2002, ApJ 567, 491.CrossRefGoogle Scholar
Primas, F., Brugamyer, E., Sneden, C., King, J.R., Beers, T.C., Boesgaard, A.M., Deliyannis, C.P. 2000, in: Weiss, A., Abel, T.G. & Hill, V. (eds.) The First Stars (Berlin: Springer), p. 51.Google Scholar
Rigon, L., Turatto, M., Benetti, S., et al. 2002, MNRAS submitted.Google Scholar
Ryan, S.G., Norris, J.E. Beers, T.C. 1996, ApJ 471, 254.CrossRefGoogle Scholar
Shigeyama, T., Tsujimoto, T. 1998, ApJ (Letters) 507, L135.CrossRefGoogle Scholar
Sneden, C., Gratton, R.G., Crocker, D.A. 1991, A&A 246, 354.Google Scholar
Strickland, D.K. 2001, in: Fusco-Femiano, R. & Matteucci, F. (eds.), Chemical Enrichment of Intracluster and Intergalactic Medium, ASP-CS 253, 387.Google Scholar
Thielemann, F.-K., Nomoto, K., Hashimoto, M. 1996, ApJ 460, 408.CrossRefGoogle Scholar
Timmes, F.X., Woosley, S.E., Hartmann, D.H., Hoffman, R.D. 1996, ApJ 464, 332.CrossRefGoogle Scholar
Tsuru, T. G., Awaki, H., Koyama, K., Ptak, A. 1997, PASJ 49, 619.Google Scholar
Turatto, M., Mazzali, P.A., Young, T.R., Nomoto, K. et al. 1998, ApJ (Letters) 498, L129.CrossRefGoogle Scholar
Turatto, M., Suzuki, T., Mazzali, P.A., et al. 2000, ApJ (Letters) 534, L57.CrossRefGoogle Scholar
Umeda, H., Nomoto, K. 2002, ApJ 565, 385.CrossRefGoogle Scholar
Umeda, H., Nomoto, K., Tsuru, T.G., Matsumoto, H., 2002, ApJ 578, 855.CrossRefGoogle Scholar
Wang, L., Baade, D., Höflich, P., et al. 2002, ApJ submitted (astro-ph/0206386).Google Scholar
Woosley, S.E., Eastman, R.G., Schmidt, B.P. 1999, ApJ 516, 788.CrossRefGoogle Scholar
Zampieri, L., Pastorello, A. Turatto, M., et al. 2002, MNRAS submitted.Google Scholar