Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T22:43:19.575Z Has data issue: false hasContentIssue false

Inflation, Microwave Background Anisotropy, and Open Universe Models

Published online by Cambridge University Press:  25 May 2016

J.A. Frieman*
Affiliation:
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The inflationary scenario for the very early universe has proven very attractive, because it can simultaneously solve a number of cosmological puzzles, such as the homogeneity of the Universe on scales exceeding the particle horizon at early times, the flatness or entropy problem, and the origin of density fluctuations for large-scale structure [1]. In this scenario, the observed Universe (roughly, the present Hubble volume) represents part of a homogeneous inflated region embedded in an inhomogeneous space-time. On scales beyond the size of this homogeneous patch, the initially inhomogeneous distribution of energy-momentum that existed prior to inflation is preserved, the scale of the inhomogeneities merely being stretched by the expansion.

Type
Part I: Invited Reviews
Copyright
Copyright © Kluwer 1996 

References

1. For a review see Olive, K. A., Phys. Rep. C 190, 307 (1990).Google Scholar
2. See, e.g. , Kent, S. and Gunn, J., Astron. J. 87, 945 (1982).Google Scholar
3. White, S. D. M. et al., Nature 366, 429 (1993).Google Scholar
4. Lilly, S., Ap. J 333, 161 (1988); Chambers, K. C. and Charlot, S., Ap.J. 348, L1 (1990); Chambers, K. C., et al., Ap. J. 363, 21 (1990).Google Scholar
5. Uson, J. et al., Phys. Rev. Lett. 67, 3328 (1992); Giavalisco, M. et al., Ap. J. 425, L5 (1994); Kashlinsky, A., Ap. J. 406, L1 (1993).CrossRefGoogle Scholar
6. Dekel, A., Ann. Rev. Astr. Astrophys., in press (1994).Google Scholar
7. Kashlinsky, A., Ap. J. 386, L37 (1992), and in “Evolution of the Universe and its observational quest” , ed. Sato, K., in press (1994); Scaramella, R. et al., Ap. J. 422, 1 (1994).Google Scholar
8. Fukugita, M. and Turner, E. L., MNRAS 253, 99 (1991); Maoz, D. and Rix, H. W., Ap. J. 416, 425 (1993); Kochanek, C., Ap. J. 419, 12 (1993).Google Scholar
9. Gott, J. R., Nature 295, 304 (1982); Ellis, G. F. R., Class. Quantum Grav. 5, 891 (1988); Steinhardt, P., Nature 345, 47 (1989); Lyth, D. H. and Stewart, E. D., Phys. Lett. B252, 336 (1990); Ratra, B. and Peebles, P. J. E. preprints PUPT-1444, PUPT-1445 (1994); Bucher, M., Goldhaber, A. S., and Turok, N., preprint PUPT-94-1507 (1994).Google Scholar
10. Grischuk, L. and Zeldovich, Ya. B., Sov. Astron. 22, 125 (1978).Google Scholar
11. Smoot, G. et al Ap. J. 396, L1 (1992); Bennett, C. et al. Ap. J. (1994), submitted.Google Scholar
12. Turner, M., Phys. Rev. D 44, 3737 (1991).Google Scholar
13. Grischuk, L., Phys. Rev. D 45, 4717 (1992).Google Scholar
14. Kashlinsky, A., Tkachev, I., and Frieman, J., Phys. Rev. Lett. 73, 1582 (1994).Google Scholar
15. Goldwirth, D.S. and Piran, T., Phys. Rev. Lett. 64, 2852 (1990).Google Scholar
16. See, e.g. , Wilson, M., Ap. J. 253, L53 (1983); Abbott, L. F. and Schaefer, R. K., Ap. J. 308, 546 (1986); Traschen, J. and Eardley, D., Phys. Rev. D 34, 1665 (1986), and the last two references in [9]; Kamionkowski, M. and Spergel, D., preprint IASSNS-HEP-93/73 (1993).Google Scholar
17. Mukhanov, V. F., Feldman, H. A. and Brandenberger, R. H., Phys. Rep. C 215, 203 (1992).CrossRefGoogle Scholar
18. Bardeen, J., Phys. Rev. D 22, 1882 (1980).Google Scholar