Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T01:57:21.274Z Has data issue: false hasContentIssue false

Magnetohydrodynamic Origin of Jets from Accretion Disks

Published online by Cambridge University Press:  25 May 2016

R.V.E. Lovelace
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853; rvl1@cornell.edu
G.V. Ustyugova
Affiliation:
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia, 125047, ustyugg@spp.Keldysh.ru
A.V. Koldoba
Affiliation:
Institute of Mathematical Modelling, Russian Academy of Sciences, Moscow, Russia, 125047

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the B field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin -the acceleration and collimation - of jets from accretion disks. Simulation studies in the hydromagnetic wind regime indicate that the outflows are accelerated close to their region of origin whereas the collimation occurs at much larger distances.

Type
III. AGN Theory and Models
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Balbus, S.A., & Hawley, J.F. 1998, Rev. Mod. Phys., 70, 1 Google Scholar
Bisnovatyi-Kogan, G.S. 1993, in Stellar Jets and Bipolar Outflows , Errico, L. & Vittone, A.A., eds. Dordrecht: Kluwer, 369 CrossRefGoogle Scholar
Begelman, M.C., Blandford, R.D., & Rees, M.J. 1984, Rev. Mod. Phys., 56, 255 Google Scholar
Bell, A.R. 1994. Phys. Plasmas, 1, 1643 Google Scholar
Bell, A.R., & Lucek, S.G. 1995, MNRAS, 277, 1327 Google Scholar
Blandford, R.D. 1976, MNRAS, 1976, 465 Google Scholar
Blandford, R.D., & Payne, D.G. 1982, MNRAS, 199, 883 Google Scholar
Blandford, R.D., & Znajek, R.L. 1977, MNRAS, 179, 433 Google Scholar
Brandenburg, A., Nordlund, A., Stein, R.F., & Torkelson, U. 1995, ApJ, 446, 741 Google Scholar
Bridle, A.H., & Eilek, J.A., (eds) 1984, in Physics of Energy Transport in Extragalactic Radio Sources , Greenbank: NRAO Google Scholar
Bührke, T., Mundt, R., & Ray, T.P. 1988, A&A, 99 Google Scholar
Chandrasekhar, S. 1981, Hydrodynamic and Hydromagnetic Stability , (New York: Dover)Google Scholar
Colgate, S.A. & Li, H. 1998, in Proc. of VII International Conference and Lindau Workshop on Plasma Astrophysics and Space Physics , Lindau, Germany Google Scholar
Contopoulos, J., & Lovelace, R.V.E. 1994, ApJ, 429, 139 Google Scholar
Coroniti, E.V. 1981, ApJ, 244, 587 Google Scholar
Eardley, D.M. & Lightman, A.P. 1975. ApJ, 200, 187 Google Scholar
Falcke, H., Malkan, M.A., & Biermann, P.L. 1995, A&A, 298, 375 Google Scholar
Goodson, A.P., Winglee, R.M., & Böhm, K.H. 1997, ApJ, 489, 390 Google Scholar
Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1995, ApJ, 440, 742 Google Scholar
Hayashi, M.R., Shibata, K., & Matsumoto, R. 1996, ApJ, 468, L37 Google Scholar
Koldoba, A.V., Ustyugova, G.V., Romanova, M.M., Chechetkin, V.M., & Lovelace, R.V.E. 1995, Ap&SS, 232, 241 Google Scholar
Königl, A. 1989, ApJ, 342, 208 Google Scholar
Königl, A., & Ruden, S.P. 1993, Protostars and Planets III , Levy, E.H. and Lunine, J., Tucson: Univ. of Arizona Press, 641 Google Scholar
Koupelis, T., & Van Horn, H.M. 1989, ApJ, 342, 146 Google Scholar
Levinson, A. 1998, ApJ, 507, 145 Google Scholar
Livio, M., Ogilvie, G.I., & Pringle, J.E. 1998, ApJ, submitted Google Scholar
Lovelace, R.V.E. 1976, Nature, 262, 649 Google Scholar
Lovelace, R.V.E., Mehanian, C., Mobarry, C.M., & Sulkanen, M.E. 1986, ApJ Suppl., 62, 1 Google Scholar
Lovelace, R.V.E., Wang, J.C.L., & Sulkanen, M.E. 1987, ApJ, 315, 504 Google Scholar
Lovelace, R.V.E., Mobarry, C.M., & Contopoulos, J. 1989, in Accretion Disks and Magnetic Fields in Astrophysics , ed. Belvedere, G. (Dordrecht: Kluwer), 71 Google Scholar
Lovelace, R.V.E., Berk, H.L., & Contopoulos, J. 1991, ApJ, 379, 696 Google Scholar
Lovelace, R.V.E., Romanova, M.M., & Contopoulos, J. 1993, ApJ, 403, 158 Google Scholar
Lovelace, R.V.E., Romanova, M.M., & Newman, W.I. 1994, ApJ, 437, 136 Google Scholar
Lovelace, R.V.E., Newman, W.I., & Romanova, M.M., 1997, ApJ, 424, 628 CrossRefGoogle Scholar
Meier, D.L., Edgington, S., Godon, P., Payne, D.G., & Lind, K.R. 1997, Nature, 388, 350 Google Scholar
Mirabel, I.F., & Rodriguez, L.F. 1994 Nature, 371, 46 Google Scholar
Mundt, R. 1985, in Protostars and Planets II , Black, D.C. and Mathews, M.S., eds. Univ. of Arizona Press, Tucson, 414 Google Scholar
Oyed, R. & Pudritz, R.E. 1997, ApJ, 482, 712 Google Scholar
Pelletier, G., & Pudritz, R.E. 1992, ApJ, 394, 117 Google Scholar
Phinney, E.S. 1987, in Superluminal Radio Sources , Zensus, J.A., & Pearson, T.J., Cambridge: Cambridge Univ. Press, 301 Google Scholar
Pringle, J.E., 1989, MNRAS, 236, 107 Google Scholar
Pudritz, R.E., & Norman, C.A. 1986, ApJ, 301, 571 Google Scholar
Romanova, M.M., & Lovelace, R.V.E. 1997, ApJ, 475, 97 Google Scholar
Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Chechetkin, V.M., & Lovelace, R.V.E. 1997, ApJ, 482, 708 CrossRefGoogle Scholar
Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Chechetkin, V.M., & Lovelace, R.V.E. 1998, ApJ, 500, 703 Google Scholar
Sakurai, T. 1987, PASJ, 39, 821 Google Scholar
Shakura, N.I. 1973, Soviet Astron., 15, 377 Google Scholar
Shakura, N.I., & Sunyaev, R.A. 1973, A&A, 24, 337 Google Scholar
Shibata, K., & Uchida, Y. 1986, PASJ, 38, 631 Google Scholar
Shu, F.H., Lizano, S., Ruden, S.P., & Najita, J. 1988, ApJ, 328, L19 Google Scholar
Stone, J.M., & Norman, M.L. 1994, ApJ, 433, 746 Google Scholar
Uchida, Y, & Shibata, K. 1985, PASJ, 37, 515 Google Scholar
Ustyugova, G.V., Koldoba, A.V., Romanova, M.M., Chechetkin, V.M., & Lovelace, R.V.E. 1995, ApJ, 439, L39 Google Scholar
Ustyugova, G.V., Koldoba, A.V., Romanova, M.M., Chechetkin, V.M., & Lovelace, R.V.E. 1998, ApJ, in press (astro-ph/9812284) Google Scholar
Velikhov, E.P. 1959, J. Exp. Theo. Phys., 36, 1398 Google Scholar