Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T07:23:48.432Z Has data issue: false hasContentIssue false

Mapping the Dark Matter Using Weak Lensing

Published online by Cambridge University Press:  23 September 2016

Henk Hoekstra*
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, M5S 3H8, Toronto, Canada Department of Astronomy and Astrophysics, University of Toronto, 60 St. George Street, M5S 3H8, Toronto, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Weak gravitational lensing of distant galaxies by foreground structures has proven to be a powerful tool to study the mass distribution in the universe. The advent of panoramic cameras on 4-m class telescopes has led to a first generation of surveys that already compete with large redshift surveys in terms of the accuracy with which cosmological parameters can be determined. The next surveys, which already have started taking data, will provide another major step forward. At the current level, systematics appear under control, and it is expected that weak lensing will develop into a key tool in the era of precision cosmology, provided we improve our knowledge of the non-linear matter power spectrum and the source redshift distribution. In this review we will briefly describe the principles of weak lensing and discuss the results of recent cosmic shear surveys. We show how the combination of weak lensing and cosmic microwave background measurements can provide tight constraints on cosmological parameters. We also demonstrate the usefulness of weak lensing in studies of the relation between the galaxy distribution and the underlying dark matter distribution (“galaxy biasing”), which can provide important constraints on models of galaxy formation. Finally, we discuss new and upcoming large cosmic shear surveys.

Type
Session II: Formation of Large-Scale Structure 75
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Bacon, D., Massey, R., Refregier, A., & Ellis, R. 2003, MNRAS, 344, 673 Google Scholar
Bacon, D., Refregier, A., & Ellis, R. S. 2000, MNRAS, 318, 625 CrossRefGoogle Scholar
Bartelmann, M., & Schneider, P. 2001, PhR, 340, 291 Google Scholar
Bennet, C. L., et al. 2003, ApJS, 148, 1 Google Scholar
Bernardeau, F., Mellier, Y., & van Waerbeke, L. 2002, A&A, 389, L28 Google Scholar
Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583 Google Scholar
Brown, M. L., et al. 2003, MNRAS, 341, 100 Google Scholar
Colless, M., et al. 2001, MNRAS, 328, 1039 Google Scholar
Contaldi, C. R., Hoekstra, H., & Lewis, A. 2003, PRL, 90, 1303 Google Scholar
Crittenden, R. G., Natarajan, P., Pen, U. -L., & Theuns, T. 2002, ApJ, 568, 20 Google Scholar
Croft, R. A. C., et al. 2002, ApJ, 581, 20 Google Scholar
Dekel, A., & Lahav, O. 1999, ApJ, 520, 24 Google Scholar
Fischer, P., et al. 2000, AJ, 120, 1198 Google Scholar
Hamana, T., et al. 2003, ApJ, 597, 98 Google Scholar
Hoekstra, H. 2004, MNRAS, 347, 1337 Google Scholar
Hoekstra, H., et al. 2002a, ApJ, 572, 55 Google Scholar
Hoekstra, H., van Waerbeke, L., Gladders, M. D., Mellier, Y., & Yee, H. K. C. 2002b, ApJ, 577, 595 Google Scholar
Hoekstra, H., Yee, H. K. C., & Gladders, M. D. 2002c, ApJ, 577, 604 Google Scholar
Hoekstra, H., Yee, H. K. C., & Gladders, M. D. 2004, ApJ, 606, 67 Google Scholar
Jain, B., & Seljak, U. 1997, ApJ, 484, 560 Google Scholar
Jarvis, M., et al. 2003, AJ, 125, 1014 Google Scholar
Kaiser, N. 2000, ApJ, 537, 555 Google Scholar
Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460 Google Scholar
Kaiser, N., Tonry, J. L., & Luppino, G. A. 2000, PASP, 112, 768 CrossRefGoogle Scholar
Kaiser, N., Wilson, G., & Luppino, G. A. 2000, ApJL, submitted, astro-ph/0003338 Google Scholar
Kuijken, K. 1999, A&A, 352, 355 Google Scholar
Luppino, G. A., & Kaiser, N. 1997, ApJ, 475, 20 Google Scholar
Maoli, R., et al. 2001, A&A, 368, 766 Google Scholar
McKay, T. A., et al. 2001, ApJ, submitted, astro-ph/0108013 Google Scholar
Peacock, J. A., & Dodds, S. J. 1996, MNRAS, 280, L19 Google Scholar
Pen, U. -L. 1998, ApJ, 504, 601 Google Scholar
Pen, U. -L., et al. 2003, ApJ, 592, 664 CrossRefGoogle Scholar
Refregier, A., & Bacon, D. 2003, MNRAS, 338, 48 Google Scholar
Refregier, A., Rhodes, J., & Groth, E. J. 2002, ApJ, 572, L131 Google Scholar
Rhodes, J., Refregier, A., & Groth, E. J. 2001, ApJ, 552, L85 Google Scholar
Schneider, P., van Waerbeke, L., Jain, B., & Kruse, G. 1998, MNRAS, 296, 873 Google Scholar
Smith, R. E., et al. 2003, MNRAS, 341, 1311 Google Scholar
Spergel, D. N., et al. 2003, ApJS, 148, 175 Google Scholar
Tyson, J. A., et al. 2002, SPIE, 4836, 10 Google Scholar
van Waerbeke, L., et al. 2000, A&A, 358, 30 Google Scholar
van Waerbeke, L., et al. 2001, A&A, 374, 757 Google Scholar
van Waerbeke, L., et al. 2002, A&A, 393, 369 Google Scholar
Verde, L., et al. 2003, ApJS, 148, 195 Google Scholar
Wittman, D. M., Tyson, J. A., Kirkman, D., Dell'Antonio, I., & Bernstein, G. 2000, Nature, 405, 143 Google Scholar