Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T07:48:52.320Z Has data issue: false hasContentIssue false

Meteorite Delivery and Transport

Published online by Cambridge University Press:  19 July 2016

Paolo Farinella
Affiliation:
Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, I-56127 Pisa, Italy Observatoire de la Côte d'Azur, B.P. 229, F-06304 Nice Cedex 4, France E-mail: TWIN2@VM.CNUCE.CNR.IT, ZAPPALA@OBS–NICE.FR
Claude Froeschlé
Affiliation:
Observatoire de la Côte d'Azur, B.P. 229, F–06304 Nice Cedex 4, France
Robert Gonczi
Affiliation:
Observatoire de la Côte d'Azur, B.P. 229, F–06304 Nice Cedex 4, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding how meteorites and near–Earth asteroids reach their Earth–crossing orbits starting as fragments from main–belt asteroids is a basic prerequisite to identifying the original parent bodies of these objects and building a self–consistent cosmogonical interpretation of the observed properties of meteorites. We review the recent progress made in this area and the most important remaining open problems. These concern the physics of asteroidal collisions, the size distribution of small main–belt asteroids, the efficiency of different dynamical routes, and the relationships between asteroid taxonomic types based on spectrophotometry data and meteorite classes having different thermal histories and compositions.

Type
Dynamics
Copyright
Copyright © Kluwer 1994 

References

Baldwin, R.B.: 1971, “On the history of the lunar impact cratering: The absolute time scale and the origin of planetesimals”, Icarus, 14, 3652.Google Scholar
Bell, J.F., Davis, D.R., Hartmann, W.K. and Gaffey, M.J.: 1989, “Asteroids: The big picture”. In Asteroids II (Gehrels, T., Ed.), 921945, Univ. of Arizona Press, Tucson.Google Scholar
Bendjoya, Ph., Slezak, E. and Froeschlé, C.: 1991, “The wavelet transform: a new tool for asteroid family determination”, Astron. Astrophys., 251, 312330.Google Scholar
Binzel, R.P. and Xu, S.: 1993, “Chips off Vesta and a near–resonance source for basaltic achondrite meteorites”, Science, 260, 186190.Google Scholar
Binzel, R.P., Xu, S., Bus, S.J., Skrutskie, M.F., Meyer, M.R., Knezek, P. and Barler, E.S.: 1993, “Discovery of a main–belt asteroid resembling ordinary chondrite meteorites”, Science, 262, 15411543.Google Scholar
Britt, D.T., Tholen, D.J., Bell, J.F. and Pieters, C.M.: 1992, “Comparison of asteroid and meteorite spectra: Classification by principal components analysis”, Icarus, 99, 153166.CrossRefGoogle Scholar
Burbine, T.H., Gaffey, M.J. and Bell, J.F.: 1992, “S–asteroids 387 Aquitania and 980 Anacostia: Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities”, Meteoritics, 27, 424434.Google Scholar
Cellino, A. and Zappalà, V.: 1993, “Asteroid ‘clans’: Super–families or multiple events?”, Celest. Mech., 57, 3747.Google Scholar
Cellino, A., Zappalà, V. and Farinella, P.: 1991, “The asteroid size distribution from IRAS data”, Mon. Not. R. astr. Soc., 253, 561574.CrossRefGoogle Scholar
Ceplecha, Z.: 1977, “Fireballs photographed in central Europe”, Bull. Astron. Inst. Czech., 28, 328340.Google Scholar
Ceplecha, Z.: 1988, “Earth's influx of different populations of sporadic meteoroids from photographic and television data”, Bull. Astron. Inst. Czech., 39, 221236.Google Scholar
Ceplecha, Z.: 1992, “Influx of interplanetary bodies onto Earth”, Astron. Astrophys., 263, 361366.Google Scholar
Clark, B.E., Fanale, F.P. and Salisbury, J.W.: 1992, “Meteorite–asteroid spectral comparison: The effects of comminution, melting, and recrystallization”, Icarus, 97, 288297.Google Scholar
Crabb, J. and Schultz, L.: 1981, “Cosmic–ray exposure ages of ordinary chondrites and their significance for parent–body stratigraphy”, Geochem. Cosmochem. Acta, 45, 21512160.Google Scholar
Cruikshank, D.P., Tholen, D.J., Hartmann, W.K., Bell, J.F. and Brown, R.H.: 1991, “Three basaltic Earth–approaching asteroids and the source of basaltic meteorites”, Icarus, 89, 113.CrossRefGoogle Scholar
Dahlgren, M., Hahn, G., Lagerkvist, C.-I. and Lundstrom, M.: 1992, “The orbital evolution of real asteroids near the 4/1 mean motion resonance with Jupiter”. In Asteroids, Comets, Meteors 1991 (Harris, A.W. and Bowell, E., Eds.), 141144, Lunar and Planetary Institute, Houston.Google Scholar
Davis, D.R. and Ryan, E.: 1990, “On collisional disruption: Experimental results and scaling laws”, Icarus, 83, 156182.Google Scholar
Davis, D.R., Chapman, C.R., Weidenschilling, S.J. and Greenberg, R.: 1985, “Collisional history of asteroids: Evidence from Vesta and the Hirayama families”, Icarus, 62, 3053.Google Scholar
Davis, D.R., Farinella, P., Paolicchi, P., Weidenschilling, S.J. and Binzel, R.P.: 1989, “Asteroid collisional history: Effects on sizes and spins”. In Asteroids II (Gehrels, T., Ed.), 805826, Univ. of Arizona Press, Tucson.Google Scholar
Dohnanyi, J.W.: 1969, “Collisional model of asteroids and their debris”, J. Geophys. Res., 74, 25312554.Google Scholar
Drake, M.J.: 1979, “Geochemical evolution of the eucrite parent body: Possible nature and evolution of asteroid 4 Vesta”. In Asteroids (Gehrels, T., Ed.), 765782, Univ. of Arizona Press, Tucson.Google Scholar
Drummond, J.D.: 1991, “Earth–approaching asteroid streams”, Icarus, 89, 1425.Google Scholar
Drummond, J.D. and Wisniewski, W.Z.: 1990, “The rotational poles and shapes of 1580 Betulia and 3908 (1980 PA) from one apparition”, Icarus, 83, 349359.Google Scholar
Fanale, F.P., Clark, B.E. and Bell, J.F.: 1992, “A spectral analysis of ordinary chondrites, S–type asteroids, and their component materials: Genetic implications”, J. Geophys. Res., 97, 20,86320,874.Google Scholar
Farinella, P. and Davis, D.R.: 1992, “Collision rates and impact velocities in the main asteroid belt”, Icarus, 97, 111123.CrossRefGoogle Scholar
Farinella, P., Davis, D.R., Cellino, A. and Zappalà, V.: 1992, “The collisional lifetime of asteroid 951 Gaspra”, Astron. Astrophys., 257, 329330.Google Scholar
Farinella, P., Gonczi, R., Froeschlé, Ch. and Froeschlé, C.: 1993a, “The injection of asteroid fragments into resonances”, Icarus, 101, 174187.Google Scholar
Farinella, P., Gonczi, R. and Froeschlé, Ch.: 1993b, “Meteorites from the asteroid 6 Hebe”, Celest. Mech., 56, 287305.Google Scholar
Froeschlé, Ch. and Scholl, H.: 1987, “Orbital evolution of asteroids near the secular resonance ν6, Astron. Astrophys., 179, 294303.Google Scholar
Froeschlé, Ch. and Scholl, H.: 1992, “The effect of secular resonances in the asteroid region between 2.1 and 2.4 AU”. In Asteroids, Comets, Meteors 1991 (Harris, A.W. and Bowell, E., Eds.), 205209, Lunar and Planetary Institute, Houston.Google Scholar
Froeschlé, Ch., Gonczi, R., Farinella, P. and Morbidelli, A.: 1994, “Orbital evolution of near–Earth asteroids affected by secular resonances”, in preparation.Google Scholar
Gaffey, M.J., Bell, J.F. and Cruikshank, D.P.: 1989, “Reflectance spectroscopy and asteroid surface mineralogy”. In Asteroids II (Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds.), 98127, Univ. of Arizona Press, Tucson.Google Scholar
Gaffey, M.J., Reed, K.L. and Kelley, M.S.: 1992, “Relationship of E–type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids”, Icarus, 100, 95109.Google Scholar
Gaffey, M.J., Burbine, T.H. and Binzel, R.P.: 1993, “Asteroid spectroscopy: Progress and perspectives”, Meteoritics, 28, 161187.Google Scholar
Gaffey, M.J., Bell, J.F., Brown, R.H., Burbine, T.H., Piatek, J.L., Reed, K.L. and Chaky, D.A.: 1994, “Mineralogical variations within the S–type asteroid class”, Icarus, 106, 573602.Google Scholar
Gault, D.E., Shoemaker, E.M. and Moore, H.J.: 1963, “Spray ejected from the lunar surface by meteoroid impact”, NASA Tech. Note D1767. Google Scholar
Greenberg, R. and Chapman, C.R.: 1983, “Asteroids and meteorites: Parent bodies and delivered samples”, Icarus, 55, 455481.Google Scholar
Greenberg, R. and Nolan, M.C.: 1989, “Delivery of asteroids and meteorites to the inner solar system”. In Asteroids II (Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds.), 778804, Univ. of Arizona Press, Tucson.Google Scholar
Hahn, G., Lagerkvist, C.-I., Lindgren, M. and Dahlgren, M.: 1991, “Orbital evolution studies of asteroids near the 5/2 mean motion resonance with Jupiter”, Astron. Astrophys., 246, 603618.Google Scholar
Halliday, I., Blackwell, A.T. and Griffin, A.A.: 1984, “The frequency of meteorite falls on the Earth”, Science, 223, 14051407.Google Scholar
Hiroi, T. and Takeda, H.: 1990, “A method to determine silicate abundances from reflectance spectra with applications to asteroid 29 Amphitrite associating it with primitive achondrite meteorites”, Icarus, 88, 205227.CrossRefGoogle Scholar
Hiroi, T., Bell, J.F., Takeda, H. and Pieters, C.M.: 1993, “Modeling of S–type asteroid spectra using primitive achondrite and iron meteorites”, Icarus, 102, 107116.Google Scholar
Housen, K.R., and Holsapple, K.A.: 1990, “On the fragmentation of asteroids and planetary satellites”, Icarus, 84, 226253.Google Scholar
Ipatov, S.I.: 1992, “Evolution of asteroidal orbits at the 5/2 resonance”, Icarus, 95, 100114.Google Scholar
Keil, K., Bell, J.F. and Britt, D.T.: 1992, “Reflection spectra of shocked ordinary chondrites and their relationship to asteroids”, Icarus, 98, 4353.Google Scholar
Knežević, Z., Milani, A., Farinella, P., Froeschlé, Ch. and Froeschlé, C.: 1991 “Secular resonances from 2 to 50 AU”, Icarus 93, 316330.Google Scholar
Lipschutz, M.E., Gaffey, M.J. and Pellas, P.: 1989, “Meteoritic parent bodies: Nature, number, size and relation to present–day asteroids”. In Asteroids II (Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds.), 740777, Univ. of Arizona Press, Tucson.Google Scholar
Marti, K. and Graf, T.: 1992, “Cosmic–ray exposure history of ordinary chondrites”, Ann. Rev. Earth. Planet. Sci., 20, 221243.Google Scholar
McSween, H.Y. Jr.: 1992, “Redox effects in ordinary chondrites and implications for asteroid spectrophotometry”, Icarus, 95, 239243.Google Scholar
Milani, A., Carpino, M., Hahn, G. and Nobili, A.M.: 1989, “Dynamics of planet–crossing asteroids: Classes of orbital behavior — Project SPACEGUARD”, Icarus, 78, 212269.Google Scholar
Milani, A., Farinella, P. and Knežević, Z.: 1992, “On the search for asteroid families”. In Interrelations between Physics and Dynamics for Minor Bodies in the Solar System (Benest, D. and Froeschlé, C., Eds.), 85132, Editions Frontières, Gif–sur–Yvette, France.Google Scholar
Morbidelli, A., Gonczi, R., Froeschlé, Ch. and Farinella, P.: 1993, “Meteorite delivery through the ν6 resonance”, Astron. Astrophys., in press.Google Scholar
Nakamura, A. and Fujiwara, A.: 1991, “Velocity distribution of fragments formed in a simulated collisional disruption”, Icarus, 92, 132146.CrossRefGoogle Scholar
Nakamura, A., Suguiyama, K. and Fujiwara, A.: 1992, “Velocity and spin of fragments from impact disruptions, I. An experimental approach to a general law between mass and velocity”, Icarus, 100, 127135.Google Scholar
Neukum, G., König, B., Fechtig, H. and Storzer, D.: 1975, “Cratering in the Earth–Moon system: Consequences for age determination by crater counting”, Lunar Planet. Sci. Conf., VI, 25972620.Google Scholar
Pellas, P. and Fiéni, C.: 1988, “Thermal histories of ordinary chondrite parent asteroids”, Lunar Planet. Sci. Conf., XIX, 915916.Google Scholar
Pellas, P. and Storzer, D.: 1981, 244Pu fission track thermometry and its application to stony meteorites”, Proc. R. Soc. Lond. A, 374, 253270.Google Scholar
Petit, J.-M. and Farinella, P.: 1993, “Modelling the outcomes of high–velocity impacts between small solar system bodies”, Celest. Mech., 57, 128.Google Scholar
Salisbury, J.W., D'Aria, D.M. and Jarosewich, E.: 1991, “Midinfrared (2.5 – 13.5 μm) reflectance spectra of powered stony meteorites”, Icarus, 92, 280297.Google Scholar
Scholl, H. and Froeschlé, C.: 1977, “The Kirkwood gaps as an asteroidal source of meteorites”. In Comets, Asteroids, Meteorites (Delsemme, A.H., Ed.), 293295, Univ. of Toledo Press, Toledo.Google Scholar
Scholl, H. and Froeschlé, Ch.: 1991, “The ν6 secular resonance region near 2 AU: A possible source of meteorites”, Astron. Astrophys., 245, 316321.Google Scholar
Stöffler, D., Gault, D.E., Wedekind, J. and Polkowski, G.: 1975, “Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta”, J. Geophys. Res., 80, 40624077.CrossRefGoogle Scholar
Van Houten, C.J., Van Houten-Groeneveld, I., Herget, P. and Gehrels, T.: 1970, “The Palomar–Leiden Survey of faint minor planets”. Astron. Astrophys. Suppl., 2, 339448.Google Scholar
Vickery, A.M.: 1986, “Size–velocity distribution of large ejecta fragments”, Icarus, 67, 224236.Google Scholar
Vilas, F. and McFadden, L.A.: 1992, “CCD reflectance spectra of selected asteroids. I. Presentation and data analysis considerations”. Icarus, 100, 8594.Google Scholar
Wetherill, G.W.: 1985, “Asteroidal source of ordinary chondrites”, Meteoritics, 20, 121.Google Scholar
Wetherill, G.W.: 1987, “Dynamical relations between asteroids, meteorites and Apollo–Amor objects”, Phil. Trans. R. Soc. Lond. A, 323, 323337.Google Scholar
Wetherill, G.W.: 1988, “Where do the Apollo objects come from?”. Icarus, 76, 118.Google Scholar
Wetherill, G.W. and Chapman, C.R.: 1988, “Asteroids and meteorites”. In Meteorites and the Early Solar System (Kerridge, J.F. and Matthews, M.S., Eds.), 3567, Univ. of Arizona Press, Tucson.Google Scholar
Wetherill, G.W. and Williams, J.G.: 1979, “Origin of differentiated meteorites”. In Origin and Distribution of the Elements (Ahrens, L.H., Ed.), 1931, Pergamon Press, Oxford.Google Scholar
Williams, J.G.: 1973, “Meteorites from the asteroid belt?”, Eos, 54, 233.Google Scholar
Wisdom, J.: 1983, “Chaotic behavior and the origin of the 3/1 Kirkwood gap”, Icarus, 56, 5174.Google Scholar
Wisdom, J.: 1985 “Meteorites may follow a chaotic route to earth”, Nature, 315, 731733.Google Scholar
Yoshikawa, M.: 1990, “Motions of asteroids at the Kirkwood gaps, I. On the 3/1 resonance with Jupiter”, Icarus, 87, 78102.Google Scholar
Zappalà, V., Farinella, P., Knežević, Z. and Paolicchi, P.: 1984, “Collisional origin of the asteroid families: Mass and velocity distributions”, Icarus, 59, 261285.Google Scholar
Zappalà, V., Cellino, A., Farinella, P. and Knežević, Z.: 1990, “Asteroid families, I. Identification by hierarchical clustering and reliability assessment”, Astron. J., 100, 20302046.Google Scholar