Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T19:42:04.715Z Has data issue: false hasContentIssue false

The need for more accurate 4000-year ephemerides, based on lunar and spacecraft ranging, ancient eclipse and planetary data

Published online by Cambridge University Press:  25 May 2016

Kevin D. Pang
Affiliation:
Fax: USA code+818 952 1371
Kevin K. Yau
Affiliation:
Jet Propulsion Lab., 230-101, Pasadena, CA 91109, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Long planetary and lunar ephemerides like the JPL DE102 and LE51 (Newhall et al., 1983) and the Bureau des Longitudes VSOP (Bretagnon, 1982) and ELP (Chapront-Touze and Chapront, 1983) have enabled more positive ancient eclipse, planetary and cometary identifications, which have in turn refined ephemerides, e.g., the reconstruction of the orbit of comets Halley and Swift-Tuttle (Yeomans and Kiang, 1981; and Yau et al., 1994). The data used to initialize DE102 are pre-1977. Much more observational data have been collected since. The lunar ephemeris has also been improved. The secular lunar acceleration, , from laser ranging, is −25.9±0.5″/cen2 (Williams et al., 1992). We can now uniquely solve for ΔT, the clock error, from ancient eclipse records. The lack of ΔT values before 700 B.C. has left the early timescale of the ephemerides unconstrained (Morrison, 1992). Our solution of this problem is outlined here.

Type
Part II - Planets and Moon: Theory and Ephemerides
Copyright
Copyright © Kluwer 1996 

References

Bretagnon, P. (1982) Astron. Astrophys. 114, 278 Google Scholar
Chapront-Touze, M. and Chapront, J. (1983) Astron. Astrophys. 124, 50 Google Scholar
Cheng, M.K. et al. (1989) Geophys. Res. Lett. 16, 393 Google Scholar
Herrmann, A. (1966) Historical Atlas of China, Edinburgh-Aldine Publishing Co., p.4 Google Scholar
Huber, P. (1987) Acta Historica Scientiarum Naturalium et Medicinalium 39, pp.3 Google Scholar
Lambeck, K. (1980) The Earth's Variable Rotation, Cambridge Univ. Press, pp.337 Google Scholar
Levy, D.H. (1992) Sky and Telescope 83, 695 Google Scholar
Morrison, L.V. (1992) Observatory 112, 289 Google Scholar
Newhall, X.X., Standish, E.M. and Williams, J.G. (1983) Astron. Astrophys. 125, 150 Google Scholar
Nivison, D.S. and Pang, K.D. (1990) Early China 15, 87 Google Scholar
Pang, K.D. et al. (1988) Vistas Astron. 31, 833 CrossRefGoogle Scholar
Pang, K.D. et al. (1989) Bull. Amer. Astron. Soc. 21, 753 Google Scholar
Pang, K.D. and Yau, K.K.C. (1992) Eos 73, No. 43, 62 Google Scholar
Pang, K.D. and Yau, K.K.C. (1995) Eos 76, No. 46, F62 Google Scholar
Pang, K.D., Yau, K. and Chou, H.H. (1996) Pure Appl. Geophys. 145, No. 3 Google Scholar
Peltier, W.R. (1985) J. Geophys. Res. 90, 9411 Google Scholar
Williams, J.G., Newhall, X.X. and Dickey, J.O. (1992) Eos 73, No. 43, 126 Google Scholar
Yau, K., Yeomans, D. and Weissman, P. (1994) Mon. Not. R. astr. Soc. 266, 305 Google Scholar
Yeomans, D.K. and Kiang, T. (1981) Mon. Not. R. astr. Soc. 197, 633 Google Scholar
Xu, Z. T., Stephenson, F.R. and Jiang, Y.T. (1995) Quart. J. Roy. astr. Soc. 36, 397.Google Scholar