Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T19:33:55.348Z Has data issue: false hasContentIssue false

Observations of Solar Oscillations in He I 10830 Å

Published online by Cambridge University Press:  03 August 2017

B. Fleck
Affiliation:
Institut für Astronomie und Astrophysik der Universität Würzburg Am Hubland, 8700 Würzburg, Germany
F.-L. Deubner
Affiliation:
Institut für Astronomie und Astrophysik der Universität Würzburg Am Hubland, 8700 Würzburg, Germany
D. Maier
Affiliation:
Institut für Astronomie und Astrophysik der Universität Würzburg Am Hubland, 8700 Würzburg, Germany
W. Schmidt
Affiliation:
Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, 7800 Freiburg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In continuation of a series of studies devoted to the dynamics of the solar photosphere and chromosphere we have attempted to further extend the range of heights in the atmosphere towards the transition region by including observations of the He I 10830 line. We have recorded simultaneous time series of He I 10830 and Mg I 8807 spectra in the quiet solar atmosphere using the echelle spectrograph at the German Vacuum Tower Telescope in Izaña, Tenerife. The velocity signal derived from the Doppler shifts of He 10830 clearly reveals oscillatory motions. The intensity of He 10830, on the other hand, is hardly affected by the oscillations. In the cell interior the 3-min oscillations prevail. Longer periods are found ain the cell boundaries of the chromospheric network where He absorption is enhanced. The V–V phase difference spectrum between the oscillations of He 10830 and those of Mg 8807 confirms previous observations of a non-propagating component that dominates the acoustic wave spectrum in the chromosphere.

Type
Part 1: Infrared Diagnostics of the Solar Atmosphere and Solar Activity
Copyright
Copyright © Kluwer 1994 

References

Athay, R.G.: 1986, in Sturrock, P. A. (ed.), Physics of the Sun, vol. 2: The Solar Atmosphere, Reidel, Dordrecht, p. 51.Google Scholar
Damé, L., Gouttebroze, P., Malherbe, J.M.: 1984, Astron. Astrophys. 130, 331.Google Scholar
Deubner, F.-L., Fleck, B.: 1990, Astron. Astrophys. 228, 506.Google Scholar
Deubner, F.-L., Fleck, B., Kossack, E.: 1992, in preparation.Google Scholar
Fleck, B.: 1991, , .Google Scholar
Fleck, B., Deubner, F.-L.: 1989, Astron. Astrophys. 224, 245.Google Scholar
Golub, L., Harvey, K.L., Herant, M., Webb, D.F.: 1989, Solar Phys. 124, 211.Google Scholar
Harvey, J.W., Sheeley, N.R.: 1977, Solar Phys. 54, 343.Google Scholar
Kahler, S.W., Davis, J.M., Harvey, J.W.: 1983, Solar Phys. 87, 47.Google Scholar
Lites, B.W.: 1986, Astrophys. J. 301, 1005.Google Scholar
Mein, N.: 1977, Solar Phys. 52, 283.Google Scholar
Rutten, R.J., Uitenbroek, H.: 1991, Solar Phys. 134, 15.Google Scholar
Souffrin, P.: Ann. Astrophys. 29, 55.Google Scholar
Ulmschneider, P., Priest, E.R., Rosner, R. (eds.): 1991, Mechanisms of Chromospheric and Coronal Heating, Springer, Berlin.Google Scholar
Venkatakrishnan, P., Jain, S.K., Singh, J., Recely, F., Livingston, W.C.: 1992, Solar Phys. 138, 107.Google Scholar
Zhang, Y., Engvold, O., Keil, S.L.: 1991, Solar Phys. 132, 63.Google Scholar