Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T08:38:35.130Z Has data issue: false hasContentIssue false

Observations of Water and Molecular Oxygen in the Interstellar Gas

Published online by Cambridge University Press:  07 August 2017

David A. Neufeld*
Affiliation:
The Johns Hopkins University, Baltimore, MD 21218

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Water and molecular oxygen are two simple molecules which are not easily observed in the interstellar medium. O2 emissions have yet to be detected from interstellar space, and H2O has been observed only in rather special environments where the interstellar gas has been warmed by embedded infrared sources or by shock waves. This sorry state of affairs does not necessarily reflect a low interstellar abundance for these species, but rather is a consequence of the very high abundance of O2 and H2O within our own atmosphere: strong atmospheric absorption lines make it extremely difficult to carry out observations of water and molecular oxygen emissions using ground-based or even airborne telescopes. Future observations from two orbiting telescopes scheduled for launch in the coming five years - the Infrared Space Observatory (ISO) and the Submillimeter Wave Astronomy Satellite (SWAS) - promise to improve radically the observational data on H2O and O2.

Type
Chemistry of Interface Regions
Copyright
Copyright © Kluwer 1992 

References

REFERENCES

Black, J. H., and Smith, P. L. 1984, ApJ, 277, 562.CrossRefGoogle Scholar
Cernicharo, J., Thum, C., Hein, H., John, D., Garcia, P., and Mattioco, F. 1990, A & A, 231, L15.Google Scholar
Chernoff, D. F., Hollenbach, D. J., and McKee, C. F. 1982, ApJL, 259, L97.CrossRefGoogle Scholar
Cheung, A. C., Rank, D. M., Townes, C. H., Thornton, D. D., and Welch, W. J. 1969, Nature, 221, 626.CrossRefGoogle Scholar
Draine, B. T., Roberge, W. G., and Dalgarno, A. 1983, ApJ, 264, 485.CrossRefGoogle Scholar
Draine, B. T., and Roberge, W. G. 1982, ApJL, 259, L91.CrossRefGoogle Scholar
Elitzur, M., and de Jong, T. 1978, A & A, 67, 323.Google Scholar
Elitzur, M., Hollenbach, D. J., and McKee, C. F. 1989, ApJ, 246, 983.CrossRefGoogle Scholar
Goldsmith, P. F., and Langer, W. D. 1978, ApJ, 222, 881.CrossRefGoogle Scholar
Goldsmith, P. F., Snell, R. L., Erickson, N. R., Dickman, R. L., Schloerb, F. P., and Irvine, W. M. 1985, ApJ, 289, 613.CrossRefGoogle Scholar
Goldsmith, P. F., and Young, J. S. 1989, ApJ, 341, 718.CrossRefGoogle Scholar
Herbst, E., and Leung, C. M. 1989, ApJS, 69, 271.CrossRefGoogle Scholar
Hollenbach, D. J., and McKee, C. F. 1979, ApJS, 41, 555.CrossRefGoogle Scholar
Hollenbach, D. J., and McKee, C. F. 1989, ApJ, 342, 306.CrossRefGoogle Scholar
Langer, W. D., Graedel, T. E., Frerking, M. A., and Armentrout, P. B. 1984, ApJ, 277, 581.CrossRefGoogle Scholar
Langer, W. D., and Graedel, T. E. 1989, ApJS, 69, 241.CrossRefGoogle Scholar
Liszt, H. S. 1985, ApJ, 298, 281.CrossRefGoogle Scholar
Liszt, H. S., and vandenBout, P. A. 1985, ApJ, 291, 178.CrossRefGoogle Scholar
Melnick, G. J. et al. 1991, in Atoms, Ions and Molecules: New Results in Spectral Line Astrophysics , ed. Haschick, A. D. and Ho, P. T. (San Francisco: Astronomical Soc. of the Pacific), p. 439.Google Scholar
Menten, K. M., Melnick, G. J., and Phillips, T. G. 1990, ApJL, 350, L41.CrossRefGoogle Scholar
Menten, K. M., Melnick, G. J., Phillips, T. G., and Neufeld, D. A. 1990, ApJL, 363, L27.CrossRefGoogle Scholar
Neufeld, D. A., and Dalgarno, A. 1989, ApJ, 340, 869.CrossRefGoogle Scholar
Neufeld, D. A., and Melnick, G. J. 1987, ApJ, 322, 266.CrossRefGoogle Scholar
Neufeld, D. A., and Melnick, G. J. 1990, ApJL, 352, L9.CrossRefGoogle Scholar
Neufeld, D. A., and Melnick, G. J. 1991, ApJ, 368, 215.CrossRefGoogle Scholar
Sternberg, A., Lepp, S., and Dalgarno, A. 1987, ApJ, 320, 676.CrossRefGoogle Scholar
Wannier, P. G. et al. 1991, ApJ, 377, 171.CrossRefGoogle Scholar