Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T12:06:21.945Z Has data issue: false hasContentIssue false

Optical and Photoemission Properties of Graphite Grains

Published online by Cambridge University Press:  14 August 2015

R. F. Willis
Affiliation:
Surface Physics Division, European Space Research Organisation, Noordwijk, Holland
B. Feuerbacher
Affiliation:
Surface Physics Division, European Space Research Organisation, Noordwijk, Holland
B. Fitton
Affiliation:
Surface Physics Division, European Space Research Organisation, Noordwijk, Holland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The optical properties and collective excitations are discussed for graphite and vitreous carbon. The bulk resonance energy for the π-plasmon is seen to be shifted by 1.4 eV from the crystalline to the amorphous case, indicating that the degree of structural disorder is an important parameter in the optical properties of carbon grains. Data are presented on work function, photoelectric yield, and photoelectron energy distribution for both graphite and vitreous carbon. Under solar irradiation, photoelectrons from graphite are emitted with an average energy of about 1 eV (12000 K).

Type
Part VI Physical Processes, Theory and Experiment
Copyright
Copyright © Reidel 1973 

References

Anderegg, M., Feuerbacher, B., and Fitton, B.: 1971, Phys. Rev. Letters 26, 760.CrossRefGoogle Scholar
Bless, R. C. and Savage, B. D.: 1972, Astrophys. J. 171, 293.Google Scholar
Carter, J. G., Huebner, R. H., Hamm, R. N., and Birkhoff, R. D.: 1965, Phys. Rev. 137, A639.Google Scholar
Feuerbacher, B. and Fitton, B.: 1972, J. Appl. Phys. 43, 1563.CrossRefGoogle Scholar
Feuerbacher, B., Anderegg, M., Fitton, B., Laude, L. D., Willis, R. F., and Grard, R. J. L.: 1972, Proc. 3rd Lunar Sci. Conf. Geochim. Cosmochim. Acta , Suppl. 3, 3, 2655.Google Scholar
Feuerbacher, B., Willis, R. F., and Fitton, B., 1973, Astrophys. J. 181, 101.CrossRefGoogle Scholar
Genzel, L. and Martin, T. P.: 1973, Surface Sci. 34, 33.CrossRefGoogle Scholar
Gilra, D. P.: 1971, Nature 229, 237.Google Scholar
Gilra, D. P.: 1971, this volume, p. 517.Google Scholar
Grard, R. J. L. and Tunaley, J. K. E.: 1971, J. Geophys. Res. 76, 2498.Google Scholar
Grard, R. J. L.: ESTEC IWP 663, European Space Research Organization, Noordwijk, Holland, unpublished.Google Scholar
Greenaway, D. L., Harbeke, G., Bassani, F., and Tosatti, E.: 1969, Phys. Rev. 178, 1340.Google Scholar
Hoyle, F. and Wickramasinghe, N. C.: 1962, Monthly Notices Roy. Astron. Soc. 124, 417.Google Scholar
Klucker, R. and Skibowski, M.: DESY, Hamburg, Germany, unpublished.Google Scholar
Painter, G. S. and Ellis, D. E.: 1970, Phys. Rev. B1, 4747.CrossRefGoogle Scholar
Spitzer, L.: 1948, Astrophys. J. 107, 6.Google Scholar
Stecher, T. P.: 1965, Astrophys. J. 142, 1683.Google Scholar
Stecher, T. P.: 1969, Astrophys. J. 157, L125.Google Scholar
Stecher, T. P. and Donn, B.: 1965, Astrophys. J. 142, 1681.Google Scholar
Taft, E. A. and Philipp, H. R.: 1965, Phys. Rev. 138, A197.Google Scholar
Tosatti, E. and Bassani, F.: 1970, Nuovo Cimento 65, 161.Google Scholar
Van de Hulst, H. C.: 1957, Light Scattering by Small Particles’ , John Wiley and Sons, New York.Google Scholar
Watson, W. D.: 1972, Astrophys. J. 176, 103 and 271.Google Scholar
Watson, W. D.: 1973, this volume, p. 335.Google Scholar
Williams, M. W. and Arakawa, E. T.: 1973, to be published.Google Scholar
Willis, R. F., Feuerbacher, B., and Fitton, B.: 1971, Phys. Rev. B4, 2941.Google Scholar
Wickramasinghe, N. C.: 1967, Interstellar Grains , Chapman and Hall, London.Google Scholar
Wickramasinghe, N. C. and Nandy, K.: 1970, Nature 227, 51.Google Scholar
Zeppenfeld, K.: 1968, Z. Physik 211, 391.Google Scholar