Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T02:06:06.906Z Has data issue: false hasContentIssue false

Pluto's Lyapunov numbers in different dynamical models

Published online by Cambridge University Press:  25 May 2016

R. Dvorak
Affiliation:
Institut für Astronomie, Universität Wien, Türkenschanzstraβe 17, A-1180 Vienna, Austria
E. Lohinger
Affiliation:
Institut für Astronomie, Universität Wien, Türkenschanzstraβe 17, A-1180 Vienna, Austria

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the results of numerical integrations of Pluto and some fictitious Plutos in three different models (the circular and the elliptic restricted three body problem and the outer solar system). We determined the “extension” of the stable region in these models by means of the Lyapunov Characteristic Numbers and by an analysis of the orbital elements.

Type
Part II - Planets and Moon: Theory and Ephemerides
Copyright
Copyright © Kluwer 1996 

References

Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J. M. (1980) “Lyapunov Characteristic Exponents for smooth dynamical systems; a method for computing all of them”, Meccanica, 15, Part I+II, 930.Google Scholar
Dvorak, R., Lohinger, E., Maindl, T. I. (1995) “On the chaoticity of Pluto's orbit”, In Perturbation theory and chaos in nonlinear dynamics with emphasis to celestial mechanics (Hagel, et al., eds.), Funchal and Vienna, pp. 2029.Google Scholar
Froeschlé, C. (1984) “The Lyapunov characteristic exponents and applications”, Journal de Mécanique théorique et appliquée. Numéro spécial, pp. 101132.Google Scholar
Sussman, G. J., Wisdom, J. (1988) “Numerical Evidence That the Motion of Pluto Is Chaotic”, Science, 241, 433437.Google Scholar
Sussman, G. J., Wisdom, J. (1992) “Chaotic Evolution of the Solar System”, Science, 257, 5662.CrossRefGoogle Scholar