Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T05:30:30.105Z Has data issue: false hasContentIssue false

Primitive Matter in Meteorites

Published online by Cambridge University Press:  04 August 2017

N. Bhandari*
Affiliation:
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 India

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A large number of elements in certain meteorites have isotopic composition different from that existing in rocks of the earth or the moon. Excess amounts of some isotopes, which are radiogenic daughters, are attributed to the in situ decay of their parent nuclide. Material containing radioactive parents is believed to have been injected into the condensing solar nebula, from astrophysical sites of their production shortly before formation of these grains. Other isotopic anomalies do not show mass dependent pattern which is characteristic of chemical fractionation. They must be primary isotopic abundances, if it is assumed that physico-chemical processes in the solar nebula cannot produce non-mass dependent fractionation. In such a case the observed isotopic ratios characterise elements differently synthesised and injected into the solar nebula which condensed before it had enough time to homogenise. Thus the isotopically anomalous matter has extra solar origin and may contain supernovae condensates, interstellar matter or dust from other stars. The evidence for different isotopic anomalies is briefly summarised and discussed in terms of the current ideas regarding chemical processes occurring in the early solar system.

Type
Meteorites
Copyright
Copyright © Reidel 1987 

References

1. Eberhardt, P. (1974) Earth Planet. Sci. Lett. 24, 182.Google Scholar
2. Black, D.C. (1972) Geochim. Cosmochim. Acta 36, 377.Google Scholar
3. Black, D.C. and Pepin, R.O. (1969) Earth Planet. Sci. Lett. 6, 395.Google Scholar
4. Gray, C.M. and Compston, W. (1974) Nature 251, 495.CrossRefGoogle Scholar
5. Lee, T. and Papanastassiou, D.W. (1974) Geophys. Res. Lett. 1, 225.Google Scholar
6. Kelly, W.R. and Wasserburg, G.J. (1978) Geophys. Res. Lett. 5, 1079.Google Scholar
7. Reynolds, J.H. (1960) Phys. Rev. Lett. 4, 8.Google Scholar
8. Rowe, M.W. and Kuroda, P.K. (1965) J. Geophys. Res. 70, 709.CrossRefGoogle Scholar
9. Fleischer, R.L., Price, P.B. and Walker, R.M. (1965) J. Geophys. Res. 70, 2703.Google Scholar
10. Bhandari, N., Bhat, S.G., Lal, D., Rajagopalan, G., Tamhane, A.S. and Venkatavaradan, V.S. (1972) Nature, 234, 543.Google Scholar
11. Clayton, R.N., Grossman, L. and Mayeda, T.K. (1973) Science 182, 485.CrossRefGoogle Scholar
12. Clayton, R.N., Mayeda, T.K. and Epstein, S. (1978) Geochim. Cosmochim. Acta Suppl. 9, 1267.Google Scholar
13. Lee, T., Papanastassiou, D.A. and Wasserburg, G.J. (1976) Geophys. Res. Lett 3, 41.Google Scholar
14. Heydegger, H.R., Foster, J.J. and Compston, W. (1979) Nature 278, 704.Google Scholar
15. Niederer, F.R., Papanastassiou, D.A. and Wasserburg, G.J. (1980) Lunar Planet Sci. XI, 809.Google Scholar
16. Fahey, A., Goswami, J.N., McKeegan, K.D. and Zinner, E. Ap. J. (1985) 296, 417.Google Scholar
17. Papanastassiou, D.A., Huneke, J.A., Esat, T.M. and Wasserburg, G.J. (1978) Lunar Planet Sci. IX, 839.Google Scholar
18. Lewis, R.S., Gros, J. and Anders, E. (1977) J. Geophys. Res. 82, 779.CrossRefGoogle Scholar
19. Lewis, R.S., Srinivasan, B. and Anders, E. (1975) Science 190, 1251.Google Scholar
20. Pepin, R.O. (1968) in Origin and Distribution of elements. Ahrens, L. (ed), Pergamon, 379.Google Scholar
21. McCulloch, M.T. and Wasserburg, G.J. (1978). Ap. J. Lett. 220, L15.Google Scholar
22. Lugmair, G.W., Marti, K. and Scheinin, N.B. (1978) Lunar Planet Sci. XV, 672.Google Scholar
23. Clayton, D.D. (1979) Space Sci. Rev. 24, 147.Google Scholar
24. Kerridge, J.F. and Chang, S. (1985) in Protostars and Planents II Univ. Arizona Press, 738.Google Scholar
25. Heidenreich, J.E. III and Thiemens, M.H. (1985) Geochim, Cosmochim, Acta 49, 1303.Google Scholar
26. Woosley, S.E. (1981) in Nucleosynthesis (Biswas, S, Ramadurai, S. and Vahia, M.N. (ed.) Tata Institute of Fundamental Res. Bombay, 17.Google Scholar
27. Clayton, R.N. (1978) Ann. Rev. Nucl. Part. Sc. 28, 501.Google Scholar
28. Begemann, F. (1980) Reports on Progress in Phys. 43, 1309.Google Scholar
29. Wasserburg, G.J. (1985) in Protostars and Planets II, Univ. Arizona Press, 703.Google Scholar
30. Wasserburg, G.J. and Papanastassiou, D.A. (1982) in Essays in Nuclear Astrophys. Barnes, C.A., Clayton, D.D. and Schramm, D.N. (eds.) Cambridge University Press, 77.Google Scholar
31. Reeves, H. (1978) in Protostars and Planets, Univ. Arizona Press, 399.Google Scholar
32. Schramm, D.N. (1978) in Protostars and Planets, Univ. Arizona Press, 384.Google Scholar
33. Cameron, A.G.W. and Truran, J.W. (1977) Icarus 30, 337.Google Scholar