Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:01:39.105Z Has data issue: false hasContentIssue false

Searching Hubble Space Telescope Images for Core-Collapse Supernova Progenitors

Published online by Cambridge University Press:  19 July 2016

Schuyler D. Van Dyk
Affiliation:
IPAC/Caltech, 100-22, Pasadena, CA 91125, USA
Weidong Li
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA
Alexei V. Filippenko
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Identifying the massive progenitor stars that give rise to core-collapse supernovae (SNe) is one of the main pursuits of supernova and stellar evolution studies, and is essential for understanding the birth of pulsars. Using ground-based images of recent, nearby SNe obtained primarily with the Katzman Automatic Imaging Telescope (KAIT), astrometry from 2MASS, and archival images from the Hubble Space Telescope (HST), we have attempted the direct identification of the progenitors of 16 Type II and Type Ib/c SNe. We may have identified the progenitors of the Type II SNe 1999br and 1999ev, the Type Ib SNe 2001B and 2001is, and the Type Ic SN 1999bu, possibly doubling the number of known SN progenitors. For the remaining SNe, limits placed on the absolute magnitude and color (when available) of the progenitor allows us to place limits on the progenitor's mass. Specifically, we have been able to place a relatively stringent limit on the progenitor of the Type II-P SN 2001du in NGC 1365, consistent with the limits placed on the masses of other Type II-P SNe. We have also recently identified the progenitor of the Type II-P SN 2003gd in Messier 74.

Type
Part 1: Neutron Star Formation and Evolution
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aldering, G., Humphreys, R. M., & Richmond, M. W. 1994, AJ, 107, 662.CrossRefGoogle Scholar
Cohen, J. G., Darling, J., & Porter, A. 1995, AJ, 110, 308.Google Scholar
Dolphin, A. E. 2000a, PASP, 112, 1383.Google Scholar
Dolphin, A. E. 2000b, PASP, 112, 1397.Google Scholar
Filippenko, A. V. 1997, ARA&A, 35, 309.Google Scholar
Gilmozzi, R., et al. 1987, Nature, 328, 318.Google Scholar
Leonard, D. C., et al. 2002, AJ, 124, 2490.Google Scholar
Leonard, D. C., et al. 2003, ApJ, 594, 247.CrossRefGoogle Scholar
Ryder, S., et al. 1993, ApJ, 416, 167.Google Scholar
Sonneborn, G., Altner, B., & Kirshner, R. P. 1987, ApJ, 323, L35.CrossRefGoogle Scholar
Thorsett, S. E., & Chakrabarty, D. 1999, ApJ, 512, 288.Google Scholar
Van Dyk, S. D., Peng, C. Y., Barth, A. J., & Filippenko, A. V. 1999, AJ, 118, 2331.Google Scholar
Van Dyk, S. D., et al. 2000, PASP, 112, 1532.Google Scholar
Van Dyk, S. D., Filippenko, A. V., & Li, W. 2002, PASP, 114, 700.Google Scholar
Van Dyk, S. D., Li, W., & Filippenko, A. V. 2003a, PASP, 115, 1.Google Scholar
Van Dyk, S. D., Li, W., & Filippenko, A. V. 2003b, PASP, 115, 448.Google Scholar
Van Dyk, S. D., Li, W., & Filippenko, A. V. 2003c, PASP, 115, 1289.CrossRefGoogle Scholar
Woosley, S. E., & Weaver, T. A. 1986, ARA&A, 24, 205.Google Scholar
Zwicky, F. 1964, ApJ, 139, 514.Google Scholar
Zwicky, F. 1965, in Stars and Stellar Systems, Vol. 8, Stellar Structure, eds. Aller, L. H., & McLaughlin, D. B., (Chicago: Univ. Chicago Press), p. 367.Google Scholar