Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:29:19.806Z Has data issue: false hasContentIssue false

The Secular Resonances in the Solar System

Published online by Cambridge University Press:  19 July 2016

Christiane Froeschle
Affiliation:
O.C.A. Laboratoire G.D. Cassini, CNRS URA 1362 B.P.229 F-06304 Nice Cedex 4, France E-mail Froesch@obs-nice.fr
Alessandro Morbidelli
Affiliation:
O.C.A. Laboratoire Cerga, CNRS URA 1360 B.P.229 F-06304 Nice Cedex 4, France E-mail Morby@obs-nice.fr

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last three years new studies on secular resonances have been done. The second–order and fourth–degree secular perturbation theory of Milani and Knežević allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. ν6) resonance at low inclination. Morbidelli and Henrard revisited the semi–numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. ν5), g = g6 (i.e. ν6) and s = s6 (i.e. ν16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show: (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance ν6 as a source of meteorites up to 2.4 AU.

Type
Dynamics
Copyright
Copyright © Kluwer 1994 

References

Farinella, P., Gonczi, R., Froeschlé, Ch and Froeschlé, Cl. 1993a. The Injection of Asteroids Fragments into Resonances. Icarus 101, 174197.Google Scholar
Farinella, P., Froeschlé, Ch. and Gonczi, R. 1993b. Meteorites from the asteroid 6 Hebe. Celest. Mech. 56, 287305.CrossRefGoogle Scholar
Froeschlé, Ch., Morbidelli, A. and Scholl, H. 1991. Complex Dynamical Behaviour of The Asteroid 2335 James associated with the Secular Resonances ν5 and ν16: Numerical Studies and Theoretical Interpretation. Astron. Astrophys. 24, 553562.Google Scholar
Froeschlé, Ch. and Scholl, H. 1989. The three principal secular resonances ν5 ν6 and ν16 in the asteroidal belt. Celest. Mech. 46, 231251.CrossRefGoogle Scholar
Froeschlé, Ch. and Scholl, H. 1992. The Effect of Secular Resonances in the Asteroid Region between 2.1 and 2.4 AU. Asteroids Comets and Meteors 1991, 205209.Google Scholar
Froeschlé, Ch. and Scholl, H. 1993. Numerical experiments in the 3/1 and ν6 overlapping region. Celest. Mech. 56, 163176.Google Scholar
Henrard, J., and Lemaitre, A. 1983. A second fundamental model for resonance. Celest. Mech. 30, 197218.Google Scholar
Knežević, Z., Milani, A., Farinella, P., Froeschlé, Ch. and Froeschlé, Cl. 1991. Secular Resonances from 2 to 50 AU. Icarus 93, 316330.Google Scholar
Kozai, Y. 1962. Secular perturbations of asteroids with high inclination and eccentricities. Astron. J. 67, 591598.Google Scholar
Lemaitre, A. and Morbidelli, A. 1994. Calculation of proper elements for high inclined asteroidal orbits. Celest. Mech., in press.CrossRefGoogle Scholar
LeVerrier, U.J. 1855. Développement de la fonction qui sert de base au calcul des mouvements des planètes. Ann. Obs. Paris 1, 258342.Google Scholar
Milani, A., Carpino, M., Hahn, G. and Nobili, A. M. 1989. Dynamics of planet–crossing asteroids: classes of orbital behavior. Project SPACEGUARD. Icarus 78, 212269.Google Scholar
Milani, A. and Knežević, Z. 1990. Secular perturbation theory and computation of asteroid proper elements. Celestial Mechanics 49, 247411.Google Scholar
Milani, A. and Kneževi$cG, Z. 1992. Asteroid proper elements and secular resonances. Icarus 98, 211232.Google Scholar
Milani, A. and Kneževi$cG, Z. 1994. Asteroid proper elements and the dynamical structure of the asteroid main belt. Icarus, in press.CrossRefGoogle Scholar
Morbidelli, A. and Henrard, J. 1991a. Secular resonances in the asteroid belt: Theoretical perturbation approach and the problem of their location. Celest. Mech. 51, 131168.Google Scholar
Morbidelli, A. and Henrard, J. 1991b. The main secular resonances ν5, ν6 and ν16 in the asteroid belt. Celest. Mech. 51, 169198.CrossRefGoogle Scholar
Morbidelli, A. 1993. Asteroid secular resonant proper elements. Icarus 105, 4866.Google Scholar
Morbidelli, A. and Moons, M. 1993. Secular resonances in mean motion commensurabilities: the 2/1 and 3/2 cases. Icarus 102, 316332.Google Scholar
Morbidelli, A., Gonczi, R., Froeschlé, Ch., and Farinella, P. 1993a. Delivery of meteorites through the ν6 secular resonance. Astron. Astrophys., in press.Google Scholar
Morbidelli, A., Scholl, H. and Froeschlé, Ch. 1993b. The location of secular resonances close to the 2/1 commensurability. Astron. Astrophys. 278, 644,653.Google Scholar
Nakai, H., and Kinoshita, H. 1985. Secular perturbations of asteroids in secular resonances. Celest. Mech. 36, 391407.Google Scholar
Poincaré, H. 1892. Les Méthodes nouvelles de la Mécanique Céleste. Gauthier Villars, Paris.Google Scholar
Šidlichovský, M. 1989. Secular resonances and the second fundamental model. Bull. Astron. Inst. Czech. 40, 92104.Google Scholar
Šidlichovský, M. 1990. The existence of a chaotic region due to the overlap of secular resonances ν5 and ν6 . Celest. Mech. 32, 177196.CrossRefGoogle Scholar
Scholl, H., Froeschlé, Ch., Yoshikawa, M., Kinoshita, H. and Williams, G. H. 1989. Secular Resonances. In Asteroids II (Binzel, R. P., Gehrels, T., Matthews, M. S., Eds.), 845861, Univ. of Arizona Press.Google Scholar
Scholl, H. and Froeschlé, Ch. 1991. The ν6 Secular Resonance Region near 2.AU: a Possible Source of Meteorites. Astron. Astrophys. 245, 316321.Google Scholar
Tisserand, M. F. 1882. Mémoire sur les mouvements séculaires des plans des orbites des trois planètes, Ann. Obs. Paris 16, E1E57.Google Scholar
Wetherill, G. W. 1977. In Comets, Minor planets and Meteorites (Delsemme, A. H., Ed.), 283292, Univ. of Toledo Press.Google Scholar
Wetherill, G. W. 1979. Steady state populations of Apollo–Amor objects. Icarus 37, 96112.CrossRefGoogle Scholar
Wetherill, G. W. 1988. Where do the apollo objects come from? Icarus 76, 118.Google Scholar
Wetherill, G. W. and Williams, J. G. 1979. In Origin and Distribution of the Elements (Ahrens, L. H., Ed.), 1931, Pergamon Oxford/ New York.Google Scholar
Williams, J. G. 1969. Secular perturbations in the Solar System. Ph.D. Dissertation, Univ. California Los Angeles.Google Scholar
Williams, J.G. and Faulkner, J. 1981. The positions of secular resonances surfaces. Icarus 46, 390399.Google Scholar
Yoshikawa, M. 1987. A simple analytical model for the secular resonance ν6 in the asteroidal belt. Celest. Mech. 40, 233272.Google Scholar