Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T23:49:48.409Z Has data issue: false hasContentIssue false

Shocks and Wind Bubbles Around Energetic Pulsars

Published online by Cambridge University Press:  19 July 2016

Bryan M. Gaensler*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-6, Cambridge MA 02138, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Crab Nebula demonstrates that neutron stars can interact with their environments in spectacular fashion, their relativistic winds generating nebulae observable across the electromagnetic spectrum. At many previous conferences, astronomers have discussed, debated and puzzled over the complicated structures seen in the Crab, but have been limited to treating most other pulsar wind nebulae (PWNe) as simple calorimeters for a pulsar's spin-down energy. However, with the wealth of high-quality data which have now become available, this situation has changed dramatically. I here review some of the main observational themes which have emerged from these new measurements. Highlights include the ubiquity of pulsar termination shocks, the unambiguous presence of relativistic jets in PWNe, complicated time variability seen in PWN structures, and the use of bow shocks to probe the interaction of pulsar winds with the ambient medium.

Type
Part 4: Pulsar Wind Nebulae and Their Environments
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Begelman, M. C., & Li, Z.-Y. 1992, ApJ, 397, 187.CrossRefGoogle Scholar
Chatterjee, S., & Cordes, J. M. 2002, ApJ, 575, 407.CrossRefGoogle Scholar
Chatterjee, S., & Cordes, J. M. 2004, ApJ, 600, 51.CrossRefGoogle Scholar
Gaensler, B. M. et al. 2000, MNRAS, 318, 58.CrossRefGoogle Scholar
Gaensler, B. M. et al. 2002a, ApJ, 569, 878.CrossRefGoogle Scholar
Gaensler, B. M. et al. 2002b, ApJ, 580, L137.CrossRefGoogle Scholar
Gaensler, B. M. et al. 2003, ApJ, 594, L111.CrossRefGoogle Scholar
Gaensler, B. M. et al. 2004, ApJ, in press (astro-ph/0312362).Google Scholar
Green, D. A., & Scheuer, P. A. G. 1992, MNRAS, 258, 833.CrossRefGoogle Scholar
Hester, J. J. 1998, Mem. Soc. Ast. It., 69, 883.Google Scholar
Hester, J. J. et al. 2002, ApJ, 577, L49.CrossRefGoogle Scholar
Kaspi, et al. 2001, ApJ, 562, L163.CrossRefGoogle Scholar
Komissarov, S. S., & Lyubarsky, Y. E. 2003, MNRAS, 344, L93.CrossRefGoogle Scholar
Ling, J. C., & Wheaton, W. A. 2003, ApJ, 598, 334.CrossRefGoogle Scholar
Manchester, R. N., Staveley-Smith, L., & Kesteven, M. J. 1993, ApJ, 411, 756.CrossRefGoogle Scholar
Ng, C.-Y., & Romani, R. W. 2004, ApJ, 601, 479.CrossRefGoogle Scholar
Olbert, C. M. et al. 2001, ApJ, 554, L205.CrossRefGoogle Scholar
Pavlov, G. G. et al. 2003, ApJ, 591, 1157.CrossRefGoogle Scholar
Petre, R., Kuntz, K. D., & Shelton, R. L. 2002, ApJ, 579, 404.CrossRefGoogle Scholar
Reynolds, S. P., & Chevalier, R. A. 1984, ApJ, 278, 630.CrossRefGoogle Scholar
Roberts, M. S. E. et al. 2003, ApJ, 588, 992.CrossRefGoogle Scholar
Stappers, B. W. et al. 2003, Science, 299, 1372.CrossRefGoogle Scholar
van der Swaluw, E. 2003, A&A, 404, 939.Google Scholar
van der Swaluw, E. et al. 2001, A&A, 380, 309.Google Scholar
van der Swaluw, E. et al. 2004, A&A, submitted (astro-ph/0311388).Google Scholar
van Kerkwijk, M. H., & Kulkarni, S. R. 2001, A&A, 380, 221.Google Scholar
Wang, Q. D., Li, Z.-Y., & Begelman, M. C. 1993, Nature, 364, 127.CrossRefGoogle Scholar
Wilkin, F. P. 1996, ApJ, 459, L31.CrossRefGoogle Scholar
Woltjer, L. et al. 1997, A&A, 325, 295.Google Scholar