Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:50:49.288Z Has data issue: false hasContentIssue false

Solar Gamma-Ray Line Spectroscopy – Physics of a Flaring Star

Published online by Cambridge University Press:  26 May 2016

Gerald H. Share
Affiliation:
E. O. Hulburt Center for Space Research, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375, USA
Ronald J. Murphy
Affiliation:
E. O. Hulburt Center for Space Research, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss how gamma-ray spectroscopy provides information about the acceleration and transport of electrons and ions in solar flares, and their interaction with the solar atmosphere. Temporal studies illuminate differences in the acceleration and transport of electrons and ions. Nuclear line studies reveal the elemental abundance, density, and temperature of the ambient solar atmosphere; and the spectrum, composition, and directionality of the accelerated ions.

Type
Part 4: High Energy Phenomena in Sun and Stars
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Avrett, C. W. 1981, in The Physics of Sunspot, ed. Cram, L.E. & Thomas, J. H. (Sunspot: Sacramento Peak Observatory), 235.Google Scholar
Aschwanden, M. J. 2002, Space Sci. Rev., 101, 1.CrossRefGoogle Scholar
Aschwanden, M. J., et al. 1996, ApJ, 470, 1198.Google Scholar
Chupp, E.L. 1990, Science, 250, 229.Google Scholar
Chupp, E.L., et al. 1973, Nature, 241, 333.CrossRefGoogle Scholar
Chupp, E.L., et al. 1987, ApJ, 318, 913.Google Scholar
Crannell, C. J., Joyce, G., Ramaty, R., & Werntz, C. 1976, ApJ, 210, 582.CrossRefGoogle Scholar
Hua, X.-M., et al. 2002, ApJS, 140, 563.Google Scholar
Hua, X.-M., Ramaty, R., & Lingenfelter, R. E. 1989, ApJ, 341, 516.Google Scholar
Hulot, E., et al. 1992, A&A, 256, 273.Google Scholar
Kanbach, G., et al. 1993, A&AS, 97, 349.Google Scholar
Kozlovsky, B., Murphy, R. J., & Share, G. H. 2004, submitted for publication in ApJ.Google Scholar
Kozlovsky, B. & Ramaty, R. 1974, ApJ, 191, L43.CrossRefGoogle Scholar
Kozlovsky, B., Murphy, R. J., & Ramaty, R. 2002, ApJS, 141, 523.Google Scholar
Lin, R. P., et al. 2003, ApJ, 595, L69.CrossRefGoogle Scholar
Mandzhavidze, N., Ramaty, R., & Kozlovsky, B. 1997, ApJ, 489, L99.Google Scholar
Masuda, S., et al. 1994, Nature 371, 495.Google Scholar
Mctiernan, J. M., & Petrosian, V. 1990, ApJ 359, 541.Google Scholar
Miller, J. A., 2000, in ASP Conf. Ser. Vol. 206, High Energy Solar Physics-Anticipating HESSI, ed. Ramaty, R. & Mandzhavidze, N., (San Francisco: ASP), 145.Google Scholar
Miller, J. A., & Ramaty, R. 1989, ApJ, 344, 973.Google Scholar
Miller, J. A., et al. 1997, J. Geophys. Res. 102: (A7), 14631.CrossRefGoogle Scholar
Murphy, R. J., et al. 2003, ApJ, 595, L93.Google Scholar
Murphy, R. J., et al. 2004, in preparation.Google Scholar
Paesold, G., Kallenbach, R., & Benz, A. O. 2003, ApJ, 582, 495.Google Scholar
Ramaty, R., Kozlovsky, B., & Lingenfelter, R. E. 1979, ApJS, 40, 487.Google Scholar
Ramaty, R., Mandzhavidze, N., Kozlovsky, B., & Murphy, R. J. 1996, ApJ, 445, L193.Google Scholar
Share, G. H., & Murphy, R. J. 1995, ApJ, 452, 933.Google Scholar
Share, G. H., & Murphy, R. J. 1997, ApJ, 485, 409.Google Scholar
Share, G. H., & Murphy, R. J. 1998, ApJ, 508, 876.Google Scholar
Share, G. H., & Murphy, R. J. 1999, Proc. 26 th Int. Cos. Ray Conf., 6, 13.Google Scholar
Share, G.H., et al. 2002, ApJ, 573, 464.Google Scholar
Share, G. H., et al. 2003a, ApJ, 595, L85.Google Scholar
Share, G. H., et al. 2003b, ApJ, 595, L89.Google Scholar
Smith, D. H., et al. 2003, ApJ, 595, L81.Google Scholar
Vestrand, W. T., et al. 1987, ApJ, 322, 1010.Google Scholar
Wang, H.T. & Ramaty, R. 1974, Sol. Phys., 36, 129.Google Scholar