Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T05:34:18.777Z Has data issue: false hasContentIssue false

Spectral Analysis of Stars on Planet-Search Surveys

Published online by Cambridge University Press:  26 May 2016

Debra Fischer
Affiliation:
San Francisco State University, 1600 Holloway, Dept Physics and Astronomy, San Francisco, CA 94132
Jeff A. Valenti
Affiliation:
Space Telescope Science Institute, Baltimore, MD 21218
Geoff Marcy
Affiliation:
University of California, Berkeley, Berkeley, CA 94720

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present spectroscopic analysis of ∼1000 stars on the Lick, Keck and AAT planet search projects. This analysis provides a quantitative, and unbiased correlation between metallicity and the rate of occurrence of detected gas giant planets with orbital periods shorter than three years. As stellar metallicity increases, the occurrence of planets increases. Stars with [Fe/H] that is one third of solar only have gas giants detected ∼ 3% of the time. Stars with solar metallicity have a planet occurrence rate of 5 − 10%. The occurrence of gas giant planets rises to 20% in stars with a metallicity that is three times solar.

At issue is whether the quantitative dependence of planet occurrence on metallicity is primarily an initial condition, or a by-product of accretion of gas-depleted material onto the convective zone of the star. Accretion could be distinguished as the underlying mechanism for enhanced metallicity if: 1) planet-bearing F-type stars with thinner convective envelopes show a higher mean metallicity than planet-bearing G- or K-type stars, or 2) planet-bearing sub-giants with diluted convective zones showed statistically lower metallicity than their main sequence counterparts.

Type
Part 1: Introduction: The Sun, the Stars, and the Planets
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Prieto, Allende, & Lambert, D. 1999 A&A, 352, 555.Google Scholar
Bryden, G., Chen, X., Lin, D. N. C., Nelson, R.P., & Papaloizou, J. C. B. 1999, ApJ, 514, 344.Google Scholar
Butler, R. P., Vogt, S. S., Marcy, G. W., Fischer, D. A., Henry, G. W., & Apps, K. 2000, ApJ, 545, 504.CrossRefGoogle Scholar
Butler, R. P., Marcy, G. W., Fischer, D. A., Brown, T., Contos, A., Korzennik, S., Nisenson, P., & Noyes, R.W. 1999, ApJ, 526, 916.CrossRefGoogle Scholar
Butler, R. P., Marcy, G. W., Williams, E., McCarthy, C., Dosanjh, P., & Vogt, S. S. 1996, PASP, 108, 500.Google Scholar
Cayrel de Strobel, G., Soubiran, C., & Ralite, N. 2001, A&A, 373, 159.Google Scholar
Chiang, E. I., Fischer, D. A. & Thommes, E. 2002, ApJ, 564, L105.Google Scholar
Ford, E. B., Havlickova, M., Rasio, F.A., & Yu, K. 2003, “Chaotic Interactions Among Multiple Planet Systems” to appear in Planetary Systems & Planets in Systems, Space Sciences Series of ISSI, Vol. 19, & Space Sciences Reviews eds. Udry, S., Benz, W., & von Steiger, R..Google Scholar
Fuhrmann, K. 1998, A&A 338, 161.Google Scholar
Goldreich, P. & Tremaine, S. 1980, ApJ, 241, 425.Google Scholar
Gonzalez, G. 1997, MNRAS, 285, 403.CrossRefGoogle Scholar
Kupka, F., Piskunov, N.E., Ryabchikova, T.A., Stempels, H.C., & Weiss, W.W. 1999, A&AS, 138, 119.Google Scholar
Laughlin, G. P., & Adams, F. C. 1997, ApJ, 491, 51.CrossRefGoogle Scholar
Laughlin, G. P. 2000, ApJ, 545, 1064.Google Scholar
Levison, H. F., Lissauer, J. J., & Duncan, M. J. 1998, AJ, 116, p.1998.Google Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606.Google Scholar
Lin, D. N. C. 1997, in ASP Conf. Ser. 121, “Accretion Phenomena & Related Outflows,” ed. Wickramasinghe, D. T., Bicknell, G., & Ferrario, L. (IAU Colloq. 163; San Francisco: ASP), 321.Google Scholar
Malhotra, R. 2002, ApJ, 575, L33.Google Scholar
Murray, N. & Holman, M. 2001, Nature 410, 773.Google Scholar
Murray, N., & Chaboyer, B. 2002, ApJ, 566, 442.Google Scholar
Pinsonneault, M. H., DePoy, D. L., & Coffee, M 2001 ApJ, 556, 59.Google Scholar
Rasio, F., & Ford, E., 1996, Science, 274, 954.CrossRefGoogle Scholar
Santos, N. C., Israelian, G. & Mayor, M. 2000, A&A, 363, 228.Google Scholar
Santos, N. C., Israelian, G., Mayor, M., Rebolo, R., & Udry, S. 2003. A&A, 398, 363.Google Scholar
Valenti, J., & Piskonov, N. 1996 A&AS, 118, 595.Google Scholar
Valenti, J., & Fischer, D. 2004 ApJ, in press.Google Scholar
Wallace, L., Hinkle, K., & Livingston, W. 1998, An Atlas of the Spectrum of the Solar Photosphere from 13,500 to 28,000 cm–1 (3570 to 7405 Å) (Tucson: NOAO).Google Scholar
Weidenschilling, S. & Marzari, F. 1996, Nature, 384, 619.Google Scholar