Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T12:47:15.803Z Has data issue: false hasContentIssue false

Studying the Evolving Universe with XMM-Newton and Chandra

Published online by Cambridge University Press:  26 May 2016

Günther Hasinger*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Postfach 1319, D-84541 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two X-ray observatories, the NASA observatory Chandra and the ESA mission XMM-Newton, provide powerful new diagnostics of the “hot universe”. In this article I review recent X–ray observations of the evolving universe. First indications of the warm/hot intergalactic medium, tracing out the large scale structure of the universe, have been obtained lately in sensitive Chandra and XMM-Newton high resolution absorption line spectroscopy of bright blazars. High resolution X–ray spectroscopy and imaging also provides important new constraints on the physical condition of the cooling matter in the centers of clusters, requiring major modifications to the standard cooling flow models. One possibility is, that the supermassive black hole in the giant central galaxies significantly energizes the gas in the cluster.

XMM-Newton and Chandra low resolution spectroscopy detected significant Fe Kα absorption features in the spectrum of the ultraluminous, high redshift lensed broad absorption line QSO APM 08279+5255, yielding new insights in the outflow geometry and in particular indicate a supersolar Fe/O ratio. Chandra high resolution imaging spectroscopy of the nearby ultraluminous infrared galaxy and obscured QSO NGC 6240 for the first time gave evidence of two active supermassive black holes in the same galaxy, likely bound to coalesce in the course of the ongoing major merger in this galaxy.

Deep X–ray surveys have shown that the cosmic X-ray background (XRB) is largely due to the accretion onto supermassive black holes, integrated over the cosmic time. These surveys have resolved more than 80 % of the 0.1–10 keV X-ray background into discrete sources. Optical spectroscopic identifications show that the sources producing the bulk of the X-ray background are a mixture of obscured (type–1) and unobscured (type–2) AGNs, as predicted by the XRB population synthesis models. A class of highly luminous type–2 AGN, so called QSO-2s, has been detected in the deepest Chandra and XMM-Newton surveys. The new Chandra AGN redshift distribution peaks at much lower redshifts (z ≈ 0.7) than that based on ROSAT data, indicating that the evolution of Seyfert galaxies occurs at significantly later cosmic time than that of QSOs.

Type
Part 2 The Data Base of High Energy Astrophysics
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Barger, A. J., Cowie, L. L., Mushotzky, R. F., Richards, E. A., 2001a, AJ, 121, 662 Google Scholar
Barger, A.J., Cowie, L.L., Bautz, M.W., et al., 2001b, AJ, 122, 2177 CrossRefGoogle Scholar
Böhringer, H., Voges, W., Fabian, A.C., et al., 1993, MNRAS, 264, L25 CrossRefGoogle Scholar
Böhringer, H., Matsushita, K., Churazov, E., et al., 2002, A&A, 382, 804 Google Scholar
Brandt, W.N., Alexander, D.M., Hornschemeier, A.E., et al., 2001, AJ, 122, 1 Google Scholar
Briel, U.G. & Henry, J.P., 1995, A&A, 302, L9 Google Scholar
Cen, R. & Ostriker, J.P., 1999, ApJ, 514, 1 Google Scholar
Chartas, G., Brandt, W.N., Gallagher, S.C., Garmire, G.P., 2002, ApJ, 579, 169 Google Scholar
Churazov, E., Brüggen, M., Kaiser, C.R., et al., 2001, ApJ, 554, 261 Google Scholar
Comastri, A., Setti, G., Zamorani, G. & Hasinger, G., 1995, A&A, 296, 1 Google Scholar
Davé, R., Cen, R., Ostriker, J., et al., 2001, ApJ, 552, 473 Google Scholar
den Herder, J.W., Brinkman, A.C., Kahn, S.M., et al., A&A, 365, L7 Google Scholar
Elvis, M., 2000, ApJ, 545, 63 Google Scholar
Fabian, A.C., 1994, ARA&A, 32, 277 Google Scholar
Fabian, A.C., Barcons, X., Almaini, O., Iwasawa, K., 1998, MNRAS, 297, L11 Google Scholar
Fabian, A.C., Sanders, J.S., Ettori, S., et al., 2000, MNRAS, 318, L65 Google Scholar
Fabian, A.C., Mushotzky, R.F., Nulsen, P.E.J., Peterson, J.R., 2001, MNRAS, 321, L20 CrossRefGoogle Scholar
Fan, X., Strauss, M., Richards, G., et al., 2001, AJ, 121, 54 Google Scholar
Fang, T., Marshall, H., Lee, J.C., et al., 2002, ApJ, 572, L127 Google Scholar
Gerssen, J., van der Marel, R., Gebhardt, K., et al., 2002, AJ, 124, 3270 Google Scholar
Giacconi, R., Zirm, A., Wang, P., et al., 2002, ApJS, 139, 369 Google Scholar
Gilli, R., Salvati, M., Hasinger, G., 2001, A&A, 366, 407 Google Scholar
Hasinger, G., Burg, R., Giacconi, R., et al., 1998, A&A, 329, 482 Google Scholar
Hasinger, G., Altieri, B., Arnaud, M., et al., 2001, A&A, 365, 45 Google Scholar
Hasinger, G. & Lehmann, I. 2001, Proceedings for “Where's the Matter?”, Marseille, France, 25–29 June 2001, eds. Tresse, L. & Treyer, M., in press.Google Scholar
Hasinger, G., Schartel, N. & Komossa, S., 2002, ApJ, 573, L77 Google Scholar
Irwin, M.J., Ibata, R.A., Lewis, G.F., Totten, E.J., 1998, ApJ, 505, 529 Google Scholar
Jansen, F., Lumb, D., Altieri, B., et al., 2001, A&A, 365, L1 Google Scholar
Komossa, S., Burwitz, V., Hasinger, G., et al., 2003, ApJ (in press), astroph/0212099 Google Scholar
Ledoux, C., Theodore, B., Petitjean, P., et al., 1998, A&A, 339, L77 Google Scholar
Lehmann, I., Hasinger, G., Schmidt, M., et al., 2001, A&A, 371, 833 Google Scholar
Lehmann, I., Hasinger, G., Murray, S.S., Schmidt, M., 2002, Proc. “High Energy Universe at Sharp Focus” (astro-ph/0109172) Google Scholar
Mason, K.O., Breeveld, A., Much, R. et al., 2001, A&A, 365, L36 Google Scholar
McNamara, B.R., Wise, M.W., Nulsen, P.E.J., et al., 2001, ApJ, 562, L149 Google Scholar
McHardy, I., Jones, L.R., Merrifield, M.R., et al., 1998, MNRAS, 295, 641 Google Scholar
Miyaji, T., Hasinger, G., Schmidt, M., 2000, A&A, 353, 25 Google Scholar
Miyaji, T., Hasinger, G., Schmidt, M., 2001, A&A, 369, 49 Google Scholar
Nicastro, F., Zezas, A., Drake, J., et al., 2002, ApJ, 573, 157 Google Scholar
Norman, C., Hasinger, G., Giacconi, R., et al. 2002, ApJ, 571, 218 Google Scholar
Paerels, F., Rasmussen, A., Kahn, S.M., 2003, in XEUS - studying the evolution of the hot universe, Hasinger, Th. Boller, and Parmer, A.N., eds., MPE Report 281, p. 57.Google Scholar
Peterson, J.R., Paerels, F.B.S., Kaastra, J.S., et al., 2001, A&A, 365, L104 Google Scholar
Phillips, L.A., Ostriker, J., Cen, R., et al., 2001, ApJ, 554, L9 Google Scholar
Rosati, P., Tozzi, P., Giacconi, R., et al., 2002, ApJ, 566, 667 Google Scholar
Schmidt, M., Schneider, D.P. & Gunn, J.E., 1995, AJ, 114, 36 Google Scholar
Sliwa, W., Soltan, A.M., Freyberg, M.J., 2001, A&A, 380, 397 Google Scholar
Soltan, A.M., Hasinger, G., Egger, R., Snowden, S., Trümper, J., 1996, A&A, 305, 17 Google Scholar
Srianand, R. & Petitjean, P., 2000, A&A, 357, 414 Google Scholar
Stern, D., Moran, E.C., Coil, A.L., et al., 2002a, ApJ, 568, 71 Google Scholar
Stern, D., Tozzi, P., Stanford, S.A., et al., 2002b, AJ, 123, 2223 CrossRefGoogle Scholar
Strüder, L., Briel, U., Dennerl, K., et al., 2001, A&A, 365, L18 Google Scholar
Szokoly, G., Bergeron, J., Hasinger, G., et al., 2003, ApJS (in prep.) Google Scholar
Tamura, T., Kaastra, J.S., Peteson, J.R., et al., 2001, A&A, 365, L87 Google Scholar
Tripp, T.M., Giroux, M.L., Stocke, J.T., et al., 2001, ApJ, 563, 724 Google Scholar
Turner, M.J.L., Abbey, A., Arnaud, M., et al., 2001, A&A, 365, L27 Google Scholar
Vignati, P., Molendi, S., Matt, G., et al., 1999, A&A, 349, 57 Google Scholar
Vitale, S., Bender, P., Brillet, A., et al., 2002, Nucl. Phys. B-Proc. Sup., 110, 209 Google Scholar
Weisskopf, M.C., 1999, Proceedings of the NATO-ASI held in Crete, Greece, 7–18 June, 1999 (astro-ph/9912097) Google Scholar
Wu, X.-P., Xue, Y.-J., 2001, ApJ, 560, 544 Google Scholar