Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:50:59.216Z Has data issue: false hasContentIssue false

Theoretical Studies of Dense Cloud Chemistry

Published online by Cambridge University Press:  04 August 2017

Eric Herbst*
Affiliation:
Department of Physics, Duke University, Durham, NC 27706 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on analyses by a variety of investigators, it has become understood that gas phase reactions can account for much of the chemistry observed in dense interstellar clouds. However, quantitative calculations of molecular abundances utilizing gas phase reactions are beset with difficulties. These difficulties include uncertainties in needed rate coefficients at the low temperatures of interstellar clouds, uncertainties in the dynamics of physical processes such as cloud collapse and clumping, and uncertainties in our understanding of gasgrain interactions. New work in some of these areas and its impact on modelling is emphasized.

Type
Interstellar Medium
Copyright
Copyright © Reidel 1987 

References

Adams, N.G., Smith, D. & Clary, D. C. 1985, Ap. J. (Letters) 296, L31.Google Scholar
Bates, D. 1982, Proc. R. Soc. Lond. A 384, 289.Google Scholar
Bates, D. 1985, Ap. J. 1985, 298, 382.Google Scholar
Clary, D. C. 1985, Molec. Phys. 54, 605.CrossRefGoogle Scholar
Croswell, K. & Dalgarno, A. 1985, Ap. J. 289, 618.Google Scholar
Dalgarno, A. & Lepp, S. 1984, Ap. J. (Letters) 287, L47.CrossRefGoogle Scholar
DeFrees, D. J., McLean, A. D. & Herbst, E. 1985, Ap. J. 293, 236.CrossRefGoogle Scholar
Draine, B. 1985, in Protostars & Planets II (Tucson: U. of Arizona)Google Scholar
Federer, W. et al. 1985, submitted to Chem. Phys. Letters. Google Scholar
Herbst, E. 1985a, in Molecular Astrophysics - State of the Art and Future Directions (Dordrecht: Reidel).Google Scholar
Herbst, E. 1985b, submitted to Ap. J. Google Scholar
Herbst, E. 1985c, Ap. J. 291, 226.Google Scholar
Herbst, E. 1985d, Ap. J. 293, 236.Google Scholar
Herbst, E. 1985e, Astron. Astrophys., in press.Google Scholar
Herbst, E. & Leung, C. M. 1985, submitted to Mon. Not. R. Astr. Soc. Google Scholar
Huntress, W. T. Jr. & Mitchell, G. F. 1979, Ap. J. 231, 456.CrossRefGoogle Scholar
Jarrold, M. F. et al. 1985, Ap. J., in press.Google Scholar
Langer, W. D. et al. 1984, Ap. J. 277, 581.Google Scholar
Leger, A., Jura, M. & Omont, A. 1985, Astron. Astrophys. 144, 147.Google Scholar
Leung, C. M., Herbst, E. & Huebner, W. F. 1984, Ap. J. Suppl. 56, 231.Google Scholar
Millar, T. J., Adams, N. G., Smith, D., and Clary, D. C. 1985, Mon. Not. R. Astr. Soc. 216, 1025.CrossRefGoogle Scholar
Millar, T. J. & Freeman, A. 1984, Mon. Not. R. Astr. Soc. 207, 405.Google Scholar
Millar, T. J. & Nejad, L. A. M. 1985, Mon. Not. R. Astr. Soc., in press.Google Scholar
Rowe, B. R. 1985, private communication as reported by E. E. Ferguson.Google Scholar
Sakimoto, K. 1981, Chem. Phys. 63, 419.Google Scholar
Sakimoto, K. 1985, Chem. Phys. Letters 116, 86.Google Scholar
Su, T. & Chesnavich, W. J. 1982, J. Chem. Phys. 76, 5183.Google Scholar
Takayanagi, K. 1978, J. Phys. Soc. Japan 45, 976.Google Scholar
Tarafdar, S. P. et al. 1985, Ap. J. 289, 220.Google Scholar
Tielens, A. G. G. M. & Hollenbach, D. 1985, Ap. J. 291, 722.CrossRefGoogle Scholar
Watt, G. D. 1985, Mon. Not. R. Astr. Soc. 212, 93.CrossRefGoogle Scholar
Winnewisser, G. & Herbst, E. 1985, ‘New Organic Molecules in Space’, in Topics in Current Chemistry (Berlin, Springer Verlag, in press)Google Scholar
Woods, R. C. et al. 1983, Ap. J. 270, 583.Google Scholar
Ziurys, L. M. & Turner, B. E. 1985, Ap. J. (Letters) 292, L25.Google Scholar