No CrossRef data available.
Article contents
Theory compression with elliptic functions
Published online by Cambridge University Press: 25 May 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction of Jacobi elliptic functions in planetary, satellite and cometary problems of celestial mechanics is a transformation of variables to present the analytical theories of motion in the more compact form as compared with the traditional series in multiples of mean longitudes or mean anomalies.
- Type
- Part II - Planets and Moon: Theory and Ephemerides
- Information
- Copyright
- Copyright © Kluwer 1996
References
Boda, K.: 1931, ‘Entwicklung der Störungsfunction und ihrer Ableitungen in Reihen, welche für beliebige Exzentrizitäten und Neigungen konvergieren’, Astron. Nachr., 243, 17
CrossRefGoogle Scholar
Bond, V.R. and Janin, G.: 1981, ‘Canonical Orbital Elements in Terms of an Arbitrary Independent Variable’, Celes. Mech.
23, 159
Google Scholar
Bretagnon, P.: 1982, ‘Théorie du mouvement de l'ensemble des planétes. Solution VSOP82’, Astron. Astrophys.
114, 278
Google Scholar
Brumberg, E.: 1992, ‘Perturbed Two-Body Motion with Elliptic Functions’, Proc. 25th Symposium on Celestial Mechanics (eds. Kinoshita, H. and Nakai, N.), 139, NAO, Tokyo
Google Scholar
Brumberg, E.: 1995, ‘Elliptic Anomaly Expansions to Construct High-Eccentricity Satellite Theory’, Abstract 6a3, IAU Symposium No. 172, Paris
Google Scholar
Brumberg, E. and Fukushima, T.: 1994, ‘Expansions of Elliptic Motion Based on Elliptic Function Theory’, Celes. Mech.
60, 69
Google Scholar
Brumberg, E., Brumberg, V.A., Konrad, Th. and Soffel, M.: 1995, ‘Analytical Linear Perturbation Theory for Highly Eccentric Satellite Orbits’, Celes. Mech.
61, 369
Google Scholar
Brumberg, V.A. and Klioner, S.A.: 1995, ‘Intermediate Orbit for General Planetary Theory in Elliptic Functions’, Abstract A16, IAU Symposium No. 172, Paris
Google Scholar
Chapront, J. and Chapront-Touzé, M.: 1995, ‘Comparaison de la théorie du mouvement de la Lune ELP aux observations: la boite à outils’, Notes sci. et techn. du BDL
S050, 105
Google Scholar
Chapront, J. and Simon, J. L.: 1988, ‘Perturbations du premier ordre pour des couples de planètes’, Bureau des Longitudes
(unpublished)
Google Scholar
Howland, R.A.: 1988, ‘A New Approach to the Librational Solution in the Ideal Resonance Problem’, Celes. Mech.
44, 209
CrossRefGoogle Scholar
Kinoshita, H. and Souchay, J.: 1990, ‘The Theory of the Nutation for the Rigid Earth Model at the Second Order’, Celes. Mech.
48, 187
Google Scholar
Laskar, J. and Robutel, Ph.: 1995, ‘Stability of the Planetary Three-Body Problem. I. Expansion of the Planetary Hamiltonian. Celes. Mech.
(in press)
Google Scholar
Nacozy, P.: 1969, ‘Hansen's Method of Partial Anomalies: An Application’, Astron. J.
74, 544
Google Scholar
Osácar, C. and Palacián, J.: 1994, ‘Decomposition of Functions for Elliptic Orbits’, Celes. Mech.
60, 207
Google Scholar
Petrovskaya, M.S.: 1970, ‘Expansions of the Negative Powers of Mutual Distance Between Bodies’, Celes. Mech.
3, 121
Google Scholar
Petrovskaya, M.S.: 1972, ‘Expansions of the Derivatives of the Disturbing Function in Planetary Problems’, Celes. Mech.
6, 328
CrossRefGoogle Scholar
Richardson, D.L.: 1982, ‘A Third-Order Intermediate Orbit for Planetary Theory’, Celes. Mech.
26, 187
CrossRefGoogle Scholar
Skripnichenko, V.I.: 1972, ‘On the Application of Hansen's Method of Partial Anomalies to the Calculation of Perturbations in Cometary Motions’, in Chebotarev, G. A., Kazimirchak-Polonskaya, E.I., and Marsden, B. G. (eds.), The Motion, Evolution of Orbits, and Origin of Comets, p. 52, Reidel, Dordrecht
CrossRefGoogle Scholar
Williams, C.A., Van Flandern, T., and Wright, E.A.: 1987, ‘First Order Planetary Perturbations with Elliptic Functions’, Celes. Mech.
40, 367
CrossRefGoogle Scholar
Yuasa, M. and Hori, G.: 1979, ‘New Approach to the Planetary Theory’, in Duncombe, R. L. (ed.), Dynamics of the Solar System, p. 69, Reidel, Dordrecht
Google Scholar
Zeipel, H.: 1912, ‘Entwicklung der Störungsfunktion’, Encyklopädie der math. Wiss.
6 (2), 557
Google Scholar
You have
Access