Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T02:23:31.860Z Has data issue: false hasContentIssue false

Thermal Or Non–Thermal X–Rays From AGNs?

Published online by Cambridge University Press:  19 July 2016

Gabriele Ghisellini
Affiliation:
Osservatorio di Torino, Strada Osservatorio 20, 10025 Torino, Italy
Francesco Haardt
Affiliation:
ISAS/SISSA, Via Beirut 2–4, 34013 Trieste, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent data from OSSE on CGRO and SIGMA on GRANAT challenge the non-thermal interpretation of the origin of the high energy emission of AGNs, showing that the hard X-ray spectra of several Seyfert AGN are steep like those of Galactic black hole candidates. Thermal models are therefore favoured. Two–phase models, in which a hot corona is placed above a relatively cold accretion disk can account for the observed X–ray spectra and the correlated variability in the UV and X–ray bands. Cold matter, both in the vicinity of the nucleous, and located further away in the torus surrounding the nucleous, may modify substantially the spectrum with important consequences on the expected variability and spectral shape.

Type
Multi-wavelength Continuum Emission of AGN
Copyright
Copyright © Kluwer 1994 

References

Antonucci, R.R., & Miller, J.S. 1985, ApJ, 297, 621 CrossRefGoogle Scholar
Cameron, R.A. et al., 1993, to be published in the proceedings of the Compton symposium, St. Louis, MO, ed. Gehrels, N. Google Scholar
Ghisellini, G., George, I.M., Fabian, A.C. & Done, C., 1991, MNRAS, 248, 14 CrossRefGoogle Scholar
Ghisellini, G., Haardt, F. & Fabian, A.C., 1993, MNRAS, 263, L9 Google Scholar
Ghisellini, G., Haardt, F. & Matt, G., 1993, submitted to MNRAS Google Scholar
Ghisellini, G. & Svensson, R., 1990, in Physical Processes in Hot Cosmic Plasmas, Eds. Brinkmann, W., Fabian, A.C. & Giovannelli, F., Kluwer Acad. Publ., p. 395 Google Scholar
Guilbert, P.W. & Rees, M.J., 1988, MNRAS, 233, 475 Google Scholar
Haardt, F. & Maraschi, L., 1991, ApJ, 380, L51 Google Scholar
Haardt, F. & Maraschi, L., 1993, ApJ, 413, 507 CrossRefGoogle Scholar
Haardt, F., 1993, ApJ, 413, 680 CrossRefGoogle Scholar
Jourdain, E., et al., 1992, A.A 256, L38 Google Scholar
Lightman, A.P. & White, T.R., 1988, ApJ, 335, 57 CrossRefGoogle Scholar
Madau, P., Ghisellini, G., & Fabian, A.C., 1993, ApJ, 410, L7 CrossRefGoogle Scholar
Maisack, et al. 1993, ApJ, 407, L61 CrossRefGoogle Scholar
Pounds, K. A., Nandra, K., Stewart, G. C., George, I. M., & Fabian, A. C., 1990, Nature, 344, 132 Google Scholar
Svensson, R., 1984, MNRAS, 209, 175 CrossRefGoogle Scholar
Zdziarski, A.A., Ghisellini, G., George, I.M., Svensson, R., Fabian, A.C. & Done, C., 1990, ApJ 363, L1 CrossRefGoogle Scholar
Zdziarski, A.A., Lightman, A.P. & Maciolek–Niedzwiecki, A., 1993, ApJ, 414, L93 Google Scholar