Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T02:32:35.402Z Has data issue: false hasContentIssue false

VLBI Imaging of Luminous Infrared Galaxies: Starbursts & AGN

Published online by Cambridge University Press:  25 May 2016

Harding E. Smith
Affiliation:
Center for Astrophysics & Space Sciences and Department of Physics, University of California, San Diego, La Jolla, CA 92093-0424, USA
Carol J. Lonsdale
Affiliation:
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
Colin J. Lonsdale
Affiliation:
Haystack Observatory, Massachusetts Institute of Technology, Westford, MA 01886, USA
Philip J. Diamond
Affiliation:
National Radio Astronomy Observatory, Socorro, NM 87801, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Luminous Infrared Galaxies (LIGs) are locally more numerous than normal galaxies, AGN, and QSOs above L ˜ 1011L and may be the evolutionary precursors of classical radio-quiet quasars. VLBI observations of a complete sample show that high-Tb radio cores are common, perhaps universal among LIGs. VLBI imaging shows that these radio cores may be produced by intense starbursts which generate luminous radio supernovae, as in the case of Arp 220 (Smith et al. 1998), or by a classical AGN core, as in the case of Mrk 231, which we interpret as a newly formed QSO emerging from a starburst. Compact OH 1667MHz maser emission appears to be common in LIGs and may be related to AGN activity. These results lend further support to the scenario suggested by Sanders et al (1988) in which mergers of gas-rich galaxies lead first to luminous starbursts which evolve into radio-quiet quasars.

Type
I. Observational Properties of AGN
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Adams, T., & Weedman, D. 1972, Ap.J., 173, L109.CrossRefGoogle Scholar
Baan, W. 1985, Nature , 315, 26. Ap.J., 419, 553.Google Scholar
Boksenberg, A., et al. 1977, M.N.R.A.S., 178, 451.Google Scholar
Boroson, T., Meyers, K., Morris, S., & Persson, S. E. 1991, Ap.J., 370, L19.Google Scholar
Bryant, P. & Scoville, N. 1996, Ap.J., 457, 678.CrossRefGoogle Scholar
Carilli, C., Wrobel, J., & Ulvestad, J. 1998, Astron. J., 115, 928.CrossRefGoogle Scholar
Condon, J., Huang, Z.-P., Yin, Q., & Thuan, T. 1991, Ap.J., 378, 65.Google Scholar
Dermer, C., et al. 1997, Ap.J., 484, L121.Google Scholar
Diamond, P., Lonsdale, C., Lonsdale, C. & Smith, H. E. 1998, Ap.J., in press .Google Scholar
Hamilton, D. & Keel, W. 1987, Ap.J., 321, 211.CrossRefGoogle Scholar
Lonsdale, C., Diamond, P., Lonsdale, C. & Smith, H. E. 1998, Ap.J., 493, L13.Google Scholar
Lonsdale, C., Smith, H. E., & Lonsdale, C. 1995, Ap.J., 438, 632.Google Scholar
Lonsdale, C., Smith, H. E., & Lonsdale, C. 1993, Ap.J., 405, L9 (Paper I).Google Scholar
McCutcheon, W. & Gregory, P. 1978, Astron. J., 83, 566.Google Scholar
Readhead, A., Taylor, G., Pearson, T., & Wilkinson, P. 1996, Ap.J., 460, 634.Google Scholar
Rudy, R., Foltz, C. & Stocke, J. 1985, Ap.J., 288, 531.Google Scholar
Rush, B., Malkan, M., Fink, H., & Voges, W. 1996, Ap.J., 471, 190.Google Scholar
Sanders, D. B. & Mirabel, I. F. 1996, ARA&A, 34, 749.Google Scholar
Sanders, D., et al. 1988, Ap.J., 325, 74.Google Scholar
Smith, H. E., Lonsdale, C., & Lonsdale, C. 1998, Ap.J., 492, 137 (Paper II).Google Scholar
Smith, H. E., Lonsdale, C., Lonsdale, C. & Diamond, P. 1998, Ap.J., 493, L17.CrossRefGoogle Scholar
Solomon, P., Downes, D., Radford, S., & Barrett, J. 1997, Ap.J., 478, 144.Google Scholar
Turner, T. J. 1998, Ap.J., in press .Google Scholar