Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T02:45:53.571Z Has data issue: false hasContentIssue false

X-Ray Novae and Related Systems

Published online by Cambridge University Press:  07 August 2017

J. Craig Wheeler
Affiliation:
Department of Astronomy University of Texas Austin, Texas 78712 U.S.A.
Soon-Wook Kim
Affiliation:
Department of Astronomy University of Texas Austin, Texas 78712 U.S.A.
Shin Mineshige
Affiliation:
Department of Physics Ibaraki University Mito, Ibaraki 310 JAPAN

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accretion disk thermal instability models have been successful in accounting for the basic observations of dwarf novae and the steady behavior of nova-like systems. Models for the dwarf-nova like variability of the old nova and intermediate polar GK Per give good agreement with the burst amplitude, profile and recurrence time in the optical and UV. A month-long “precursor plateau” in the UV is predicted for the expected 1992 outburst prior to the rise to maximum in the optical and UV. The models for the time scales of the outbursts and corresponding UV spectra at maximum are consistent with the inner edge of the accretion disk being essentially constant between quiescence and outburst and a factor of four larger than the corotation radius. These conclusions represent a challenge to the standard theory of magnetic accretion. Disk instability models have also given a good representation of the soft X-ray and optical outbursts of the X-ray novae A0620-00 and GS2000+25. Formation of coronae above the disk, heated by magneto-acoustic flux from the disk, may account for the temporal and spectral properties of the hard X-ray and gamma ray emission of related sources such as Cyg X-1, GS 2023+33 (V404 Cyg), 1E 1740.7-2942 (the “Galactic Center” Einstein Source), and GS 1124-683 (Nova Muscae).

Type
Invited Papers
Copyright
Copyright © Kluwer 1992 

References

Binachini, A., Hamsaoglu, E., and Sabbadin, F. 1981, Astr. Ap. , 99, 392.Google Scholar
Cannizzo, J. K. and Wheeler, J. C. 1984, Ap. J. Suppl. , 55, 367.Google Scholar
Cannizzo, J. K., Shafter, A. W., and Wheeler, J. C. 1988, Ap. J. , 333, 227.Google Scholar
Cannizzo, J. K., Wheeler, J. C., and Polidan, R. S. 1986, Ap. J. , 301, 634.Google Scholar
Davidson, K. and Ostriker, J. P. 1973, Ap. J. , 179, 585.Google Scholar
Haswell, C. A. and Shafter, A. W. 1990, Ap. J. Lett. , 359, L47.Google Scholar
Huang, M. and Wheeler, J. C. 1989, Ap. J. , 343, 229.Google Scholar
Johnston, H. M., Kulkarni, S. R., and Oke, J. B. Ap. J. , 345, 492.CrossRefGoogle Scholar
Kim, S.-W., Wheeler, J. C., and Mineshige, S. 1992, Ap. J. , in press.Google Scholar
Kurucz, R. L. 1979, Ap. J. Suppl. , 40, 1.Google Scholar
Lamb, F. K., Pethick, C. J., and Pines, D. 1973, Ap. J. , 184, 271.Google Scholar
Lin, D.N.C., Papaloizou, J., and Faulkner, J. 1985, M.N.R.A.S. , 212, 105.Google Scholar
Ling, J. C., Mahoney, W. A., Wheaton, W. A., and Jacobsen, A. S. 1987, Ap. J. Lett. , 321, L117.Google Scholar
Mauche, C. W., Miller, G. S., Raymond, J. C., and Lamb, F. K. 1990, in Accretion Powered Compact Binaries (Cambridge: Cambridge University Press), p. 195.Google Scholar
McClintock, J. E. and Remillard, R. A. 1986, Ap. J. , 308, 110.Google Scholar
Meyer, F. and Meyer-Hofmeister, E. 1984, Astr. Ap. , 132, 143.Google Scholar
Mineshige, S. 1988, Ap. J. , 335, 881.Google Scholar
Mineshige, S., Kim, S.-W., and Wheeler, J. C. 1990, Ap. J. Lett. , 358, L5.Google Scholar
Mineshige, S. and Osaki, Y. 1983, Publ. Astron. Soc. Japan , 35, 377.Google Scholar
Mineshige, S. and Osaki, Y. 1985, Publ. Astron. Soc. Japan , 37, 1.Google Scholar
Mineshige, S. and Shields, G. A. 1990, Ap. J. , 351, 241.Google Scholar
Mineshige, S., Tuchman, Y., and Wheeler, J. C. 1990, Ap. J. , 359, 164.Google Scholar
Mineshige, S. and Wheeler, J. C. 1989, Ap. J. , 343, 241.Google Scholar
Papaloizou, J., Faulkner, J., and Lin, D. N. C. 1983, M.N.R.A.S. , 205, 487.Google Scholar
Pringle, J. E. and Rees, M. J. 1972, Astron. Ap. , 21, 1.Google Scholar
Shakura, N. I. and Sunyaev, R. A. 1973, Astr. Ap. , 24, 337.Google Scholar
Smak, J. 1984, Acta Astron. , 34, 161.Google Scholar
Sunyaev, R. A., et al. 1991, IAUC 5176.Google Scholar
Sunyaev, R. A., Jourdain, E., and Goldwurm, A. 1991, IAUC 5201.Google Scholar
Szkody, P., Mattei, M., and Mateo, M. 1985, Publ. Astron. Soc. Pac. , 97, 264.Google Scholar
Tanaka, Y. 1990 in The 23rd ESLAB Symposium on Two Topics in X-ray Astronomy , ed. White, N. (ESA SP-296), p. 2.Google Scholar
Tuchman, Y., Mineshige, S., and Wheeler, J. C. 1990, Ap. J. , 359, 164.Google Scholar
Vishniac, E. T., Jin, L., and Diamond, P. H. 1990, Ap. J. , 365, 648.Google Scholar
Wheeler, J. C., Mineshige, S., Huang, M., and Kim, S.-W. 1990, in Cataclysmic Binaries and Low Mass X-ray Binaries , ed. Mauche, C. (Cambridge: Cambridge University Press), p. 315.Google Scholar
Wu, C-C., Panek, R. J., Holm, A. V., and Raymond, J. C. 1989, Ap. J. , 339, 443.CrossRefGoogle Scholar
Yi, I., Kim, S.-W., Vishniac, E. T., and Wheeler, J. C. 1992, in preparation.Google Scholar