We present spectroscopic and photometric observational evidence for abundance stratification in stellar atmospheres. Attention is given to chemically peculiar (Ap) stars in which magnetic fields stabilize the atmosphere, allowing diffusion processes to establish abundance stratification during the early stages of star's life. The results of recent empirical modelling of chemically stratified atmospheres are briefly discussed, and a comparison is given with the predictions of self-consistent atmospheric models which include radiative diffusion.
The importance of abundance stratification analysis is demonstrated for rapidly oscillating (roAp) stars in which the amplitudes of the radial velocity pulsations are different for the lines of different elements in different ionization stages. We also demonstrate that chemical stratification has important effects on the Zeeman Stokes IQUV profiles of Ap stars, indicating that stratification must be taken into account in detailed modelling of their magnetic fields.