Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T04:18:22.487Z Has data issue: false hasContentIssue false

Reduction of the parahippocampal gyrus and the hippocampus in patients with chronic schizophrenia

Published online by Cambridge University Press:  03 January 2018

Kamran Razi
Affiliation:
Department of Psychiatry, Stony Brook, New York, USA
Kimberly P. Greene
Affiliation:
Department of Psychiatry, Stony Brook, New York, USA
Michael Sakuma
Affiliation:
Department of Psychiatry, Stony Brook, New York, USA
Shuming Ge
Affiliation:
Department of Psychiatry, Stony Brook, New York, USA
Maureen Kushner
Affiliation:
Department of Psychiatry, Stony Brook, New York, USA
Lynn E. Delisi*
Affiliation:
Department of Psychiatry, Stony Brook, New York, USA
*
L. E. DeLisi, HSC, T-10, Department of Psychiatry, SUNY, Stony Brook, NY 11794, USA. Tel: 516-444-1612; Fax: 516-444-7536; E-mail: LDELISI@ccmail.sunysb.edu

Abstract

Background

There have been many studies reporting reduced volume of the hippocampus or other limbic structures in patients with schizophrenia, but the literature is inconsistent.

Aims

To compare patients with either first-episode or chronic schizophrenia with controls using high-resolution volumetric magnetic resonance imaging (MRI) scans.

Method

Thirteen patients with first-episode schizophrenia, 27 with chronic schizophrenia and 31 controls had 1.5 mm coronal slices taken through the whole brain using a spoiled-grass MRI acquisition protocol.

Results

The parahippocampal gyrus was reduced significantly on the left side in patients with chronic schizophrenia compared with controls for both male and female patients, whereas the hippocampus was reduced significantly on both sides only in female patients. There were no significant reductions in any structure between patients with first-episode schizophrenia and controls.

Conclusions

Volumetric reduction seen in patients with chronic schizophrenia may be due to an active degenerative process occurring after the onset of illness.

Type
Papers
Copyright
Copyright © 1999 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Declaration of interest

This work was funded in part by National Institute of Mental Health grant ROI-44233.

References

Altshuler, L. L., Casanova, M. F., Goldberg, T E., et al (1999) The hippocampus and parahippocampus in schizophrenic, suicide, and control brains. Archives of General Psychiatry, 47, 10291034.CrossRefGoogle Scholar
American Psychiatrie Association (1987) Diagnostic and Statistical Manual of Mental Disorders (3rd edn, revised) (DSM-III-R). Washington, DC: APA.Google Scholar
Barta, P. E., Pearlson, G. D., Powers, R. E., et al (1990) Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. American Journal of Psychiatry, 147, 14571462.Google ScholarPubMed
Becker, T., Elmer, K., Mechela, B., et al (1990) MRI findings in medial temporal lobe structures in schizophrenia. European Neuropsychopharmacology, 1, 8386.CrossRefGoogle ScholarPubMed
Biider, R. M., Bogerts, B., Ashtari, M., et al (1995) Anterior hippocampal volume reductions predict frontal lobe dysfunction in first episode schizophrenia. Schizophrenia Research, 17, 4758.Google Scholar
Bogerts, B. (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophrenia bulletin, 23, 423435.CrossRefGoogle ScholarPubMed
Bogerts, B., Meertz, E. & Schonfeldt-Bausch, R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Archives of General Psychiatry 42, 784791.CrossRefGoogle ScholarPubMed
Bogerts, B., Ashtari, M., Degreef, G., et al (1990a) Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Research: Neuroimaging, 35, 113.CrossRefGoogle ScholarPubMed
Bogerts, B., Falkai, P., Haupts, M., et al (1990b) Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection. Schizophrenia Research, 3, 295301.CrossRefGoogle ScholarPubMed
Bogerts, B., Lieberman, J. A., Ashtari, M., et al (1993) Hippocampus–amygdala volumes and psychopathology in chronic schizophrenia. Biological Psychiatry, 33, 236246.CrossRefGoogle ScholarPubMed
Brier, A., Buchanan, R. W., Elkashef, A., et al (1992) Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Archives of General Psychiatry, 49, 921926.CrossRefGoogle Scholar
Brown, R., Colter, N., Corsellis, N., et al (1986) Postmortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry 43, 3642.CrossRefGoogle ScholarPubMed
Chen, E. Y. H. (1995) A neural network model of cortical information processing in schizophrenia. II–role of hippocampal–cortical interaction: a review and a model. Canadian Journal of Psychiatry 40, 2126.CrossRefGoogle ScholarPubMed
Colter, N., Battal, S., Crow, T. J., et al (1987) White matter reduction in the parahippocampal gyrus of patients with schizophrenia. Archives of General Psychiatry, 44, 1023.CrossRefGoogle ScholarPubMed
Conrad, A. J. & Scheibel, A. B. (1987) Schizophrenia and the hippocampus: the embryological hypothesis extended. Schizophrenia Bulletin, 13, 577587.CrossRefGoogle ScholarPubMed
Crow, T J., Ball, J., Bloom, S. R., et al (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Archives of General Psychiatry, 46(12), 11451150.CrossRefGoogle Scholar
Dauphinais, I. D., DeLisi, L. E., Crow, T. J., et al (1990) Reduction in temporal lobe size in siblings with schizophrenia: a magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 35, 137147.CrossRefGoogle ScholarPubMed
DeArmond, S. J., Fusco, M. M. & Dewey, M. M. (1989) Structure of the Human Brain: a Photographic Atlas (3rd edn). New York: Oxford University Press.Google Scholar
DeLisi, L. E., Dauphinais, I. D. & Gershon, E. S. (1988) Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophrenia Bulletin, 14, 185191.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Hoff, A. L., Schwartz, J. E., et al (1991a) Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biological Psychiatry, 29, 159175.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Bocdo, A. M., Riordan, H., et al (1991b) Familial thyroid disease and delayed language development in first admission patients with schizophrenia. Psychiatry Research, 38, 3950.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Sakuma, M., Tew, W., et al (1997) Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Research: Neuroimaging, 74, 129140.CrossRefGoogle Scholar
DeLisi, L. E., Sakuma, M., Ge, S., et al (1998) Association of brain structural change with the heterogeneous course of schizophrenia from early childhood through five years subsequent to a first hospitalization. Psychiatry Research. Neuroimaging, 84, 7588.CrossRefGoogle ScholarPubMed
Dwork, A. J. (1997) Postmortem studies of the hippocampal formation in schizophrenia. Schizophrenia Bulletin, 23, 385402.CrossRefGoogle ScholarPubMed
Fukuzako, H., Fukuzako, T., Hashiguchi, T., et al (1996) Reduction in hippocampal formation volume is cased mainly by shortening in chronic schizophrenia: assessment by MRI. Biological Psychiatry 39, 938945.CrossRefGoogle Scholar
Fukuzako, H., Yamada, K., Kodama, S., et al (1997) Hippocampal volume asymmetry and age at illness onset in males with schizophrenia. European Archives of Psychiatry in Clinical Neuroscience, 247, 248251.CrossRefGoogle ScholarPubMed
Heckers, S., Heinsen, H., Heinsen, Y. C., et al (1990a) Limbic structures and lateral ventricle in schizophrenia. Archives of General Psychiatry, 47, 10161022.CrossRefGoogle ScholarPubMed
Heckers, S., Heinsen, H., Heinsen, Y. C., et al (1990b) Morphometry of the parahippocampal gyrus in schizophrenics and controls. Some anatomical considerations. Journal of Neural Transmission, 80, 151155.CrossRefGoogle ScholarPubMed
Howard, R., Mellers, J., Petty, R., et al (1995) Magnetic resonance imaging volumetric measurements of the superior temporal gyrus, hippocampus, parahippocampal gyrus, frontal and temporal lobes in late paraphrenia. Psychological Medicine, 25, 495503.CrossRefGoogle ScholarPubMed
Jacobson, L. K., Giedd, J. N., Vaitzis, A. C., et al (1996) Temporal lobe morphology in childhood-onset schizophrenia. American Journal of Psychiatry, 153, 355361.Google Scholar
Jeste, D. V. & Lohr, J. B. (1989) Hippocampal pathologic findings in schizophrenia: a morphometric study. Archives of General Psychiatry, 46, 10191024.CrossRefGoogle ScholarPubMed
Kelsoe, J. R., Cadet, J. L., Pickar, D, et al (1988) Quantitative neuroanatomy in schizophrenia. Archives of General Psychiatry, 45, 533541.CrossRefGoogle ScholarPubMed
Luchins, D. J., Nettles, K. W. & Goldman, M. B. (1997) Anterior medial temporal lobe volumes in Polydipsic schizophrenia patients with and without hypoosmolemia: a pilot study. Biological Psychiatry, 42, 767770.CrossRefGoogle ScholarPubMed
Marsh, L, Suddath, R. L., Higgins, N., et al (1994) Medial temporal lobe structures in schizophrenia: relationship of size to duration of illness. Schizophrenia Research, 11, 225238.CrossRefGoogle ScholarPubMed
Rossi, A., Stratts, P., Mancini, F., et al (1994) Magnetic resonance imaging findings of amygdala-anterior hippocampus shrinkage in male patients with schizophrenia. Psychiatry Research, 52, 4353.CrossRefGoogle ScholarPubMed
Shenton, M. E., Kildnis, R., Joiesz, F. A., et al (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia. New England Journal of Medicine, 327, 604612.CrossRefGoogle ScholarPubMed
Stevens, J. R. (1973) An anatomy of schizophrenia? Archives of General Psychiatry. 39, 177189.CrossRefGoogle Scholar
Suddath, R. L., Christison, G. W., Torrey, E F., et al (1990) Anatomical abnormalities in the brain of monozygotic twins discordant for schizophrenia. New England journal of Medicine, 322, 789794.CrossRefGoogle ScholarPubMed
Swayze, V. W. II Andreasen, N. C., Alliger, R. J., et al (1992) Subcortical and temporal structures in affective disorder and schizophrenia: a magnetic resonance imaging study, Biological Psychiatry, 31, 221240.CrossRefGoogle ScholarPubMed
Torrey, E. F. & Peterson, M. R. (1974) Schizophrenia and the limbic system. Lancet, ii, 942946.CrossRefGoogle Scholar
Van Hoesen, G. W., (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends in Neuroscience, 5, 345350.CrossRefGoogle Scholar
Wallcor, M., Highley, J. R., McDonald, B., et al (1998) A stereological study of the volume of the hippocampus in post mortem control and schizophrenic brains. Schizophrenia Research, 29, 88.Google Scholar
Weinberger, D. R., Barman, K F., Suddath, R., et al (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry 149, 890897.Google ScholarPubMed
Williams, P. L. (ed.) (1995) Gray's Anatomy: the Anatomical basis of Mediane and Surgery (38th edn). New York: Churchill Livingstone.Google Scholar
Woodruff, P. W., Wright, I. C., Shuriquie, N., et al (1997) Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychological Medicine, 27, 12571266.CrossRefGoogle ScholarPubMed
Young, A. H., Blackwood, D. H. R., Raxborough, H., et al (1991) A magnetic resonance imaging study of schizophrenia: brain structure and clinical symptoms, British Journal of Psychiatry 158, 158164.CrossRefGoogle ScholarPubMed
Zipursky, R. B., Marsh, L., Lim, K. O., et al (1994) Volumetric MRI assessment of temporal lobe structures in schizophrenia, Biological Psychiatry, 35, 501516.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.