Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T18:17:22.489Z Has data issue: false hasContentIssue false

Biocrystallization models and skeletal structure of Phanerozoic corals

Published online by Cambridge University Press:  21 July 2017

James E. Sorauf*
Affiliation:
Binghamton University, Binghamton, New York 13902-6000
Get access

Abstract

Modern understanding of skeletal microstructure in fossil corals builds on knowledge of structure and biomineralization in modern corals and diagenesis of carbonate skeletons. It is agreed that the skeleton of living stony corals, the Scleractinia, is made of fibrous aragonite, with growth of biocrystals generally according to rules of crystal growth as observed in inorganic aragonite, but here controlled by organic matrix. Fossil scleractinians all apparently fit the same model of biomineralization seen in living corals, although some early taxa (Triassic) lack septal trabeculae, rod-like framework structures typical of all living and most fossil septate corals.

Paleozoic corals, both septate Rugosa and non-septate Tabulata, had a skeleton of calcite, most likely low-magnesium calcite, thus had diagenetic histories differing considerably from the aragonitic Scleractinia. Agreement is lacking as to whether a single structural motif can be defined for the calcitic corals, that is, whether the Rugosa and Tabulata originally had a calcitic skeleton built of fibrous biocrystals, analogous to the scleractinians, or whether some others originally had a non-fibrous, lamellar skeletal microstructure. The disagreement hinges on whether both of these basic configurations are biogenic, or whether the latter is sometimes or always diagenetic in origin. The presence of matrix control over biomineralization in Rugosa and Tabulata is yet to be proven, but will play an important role in models for biocrystallization in these older cnidarians. Details of diagenetic history and modification of structures in these calcitic corals likewise warrant investigation to improve our ability to interpret the Paleozoic corals.

Type
Research Article
Copyright
Copyright © 1996 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloiteau, J. 1957. Contribution a la systématique des madreporaires fossiles. Centre National de la Recherche Scientifique, Paris, 462 p.Google Scholar
Barnes, D. 1970. Coral skeletons: an explanation of their growth and structure. Science, 170:13051308.Google Scholar
Barnes, D. 1972. The structure and formation of growth-ridges in scleractinian coral skeletons. Proceedings of the Royal Society of London, Series B, 182:331350.Google Scholar
Boggild, O.B. 1930. The Shell Structure of the Mollusks. Koeniglik Danske Videnskabernes Selskab Skrifter, Naturvidenskabellig og Mathematisk Afdeling, 9:1325.Google Scholar
Brand, U. 1981. Mineralogy and chemistry of the Lower Pennsylvanian Kendrick fauna, eastern Kentucky, 1. Trace elements. Chemical Geology, 32:116.Google Scholar
Brand, U., and Morrison, J. O. 1987. Biogeochemistry of fossil marine invertebrates. Geoscience Canada, 14:85107.Google Scholar
Bryan, W. H., and Hill, D. 1941. Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proceedings, Royal Society of Queensland, 52:7879.Google Scholar
Chevalier, J. P. 1987. Ordre des Scléractiniaires, p. 401678. In Grassé, P. (éd.), Traité de Zoologie, Tome III, Cnidaires, Anthozoaires. Masson, Paris.Google Scholar
Constantz, B. 1986. Coral skeleton construction: a physiochemically dominated process. Palaios, 1:152158.Google Scholar
Constantz, B. 1990. Skeletal Organization in Caribbean Acropora spp. (Lamarck), p. 175199. In Crick, R. E., (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York.Google Scholar
Constantz, B., and Meike, A. 1990. Calcite centers of calcification in Mussa angulosa (Scleractinia), p. 201207. In Crick, R. E. (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York.Google Scholar
Copper, P. 1985. Fossilized polyps in 430-Myr-old Favosites corals. Nature, 316:142144.Google Scholar
Copper, P., and Plusquellec, Y. 1993. Ultrastructure of the walls, tabulae and “polyps” in Early Silurian Favosites from Anticosti Island, Canada. Courier Forschungsinstitut Senckenberg, 164:301308.Google Scholar
Cuif, J. P. 1975. Caracteres morphologiques microstructuraux et systématiques des Pachythecalidae, nouvelle famille de Madreporaires Triasique. Geobios, 8:157180.Google Scholar
Cuif, J. P. 1977. Arguments pour une relation phyletique entre les madreporaires Paleozoiques et ceux de Trias. Société Géologique de France (Nouv. Ser.), Memoire, 129:148.Google Scholar
Cuif, J. P., Dauphin, Y., Denis, A., Gautret, P., and Marin, F. In press. The organo-mineral structure of coral-skeletons: a potential source of new criteria for scleractinian taxonomy. Bulletin Institut Océanographique de Monaco, 14.Google Scholar
Cuif, J. P., and Gautret, P. 1995. Glucides et protéines de la matrice soluble des biocristaux de Scléractiniaires Acroporidés. Comptes Rendus, Académie des Sciences de Paris, Serie II, 320:273278.Google Scholar
Cuif, J. P., and Gautret, P. In press. Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Bolotino de la Real Sociedad Española de Historia Natural.Google Scholar
Gallitelli, E. M., Morandi, N., and Pirani, R. 1973. Corallofauna triassica aragonitica ad alto contenuto in stronzio: studio analitico e considerazioni. Bollettino della Società Paleontologica Italiana, 12:130144.Google Scholar
Gautret, P., and Marin, F. 1993. Evaluation of diagenesis in scleractinian corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Courier Forschungsinstitut Senckenberg, 164:317327.Google Scholar
Goreau, T. F. 1959. The physiology of skeleton formation in corals. I. A metho for measuring the rate of calcium deposition under different conditions. Biological Bulletin, 116:5975.Google Scholar
Goreau, T. F., and Goreau, N. I. 1959. The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biological Bullletin, 117:239250.Google Scholar
Goreau, T. F., and Goreau, N. I. 1960a. The physiology of skeleton formation in corals. III. Calcification as a function of colony weight and total nitrogen content in the reef coral Manicina areolata (Linnaeus). Biological Bulletin, 118:419429.Google Scholar
Goreau, T. F., and Goreau, N. I. 1960b. The physiology of skeleton formation in corals. IV. On isotopic equilibrium exchanges of calcium between corallum and environment in living and dead reef-building corals. Biological Bulletin, 119:416427.Google Scholar
Hill, D. 1936. The British Silurian rugose corals with acanthine septa. Philosophical Transactions of the Royal Society of London, Series B, 534:189217.Google Scholar
Hill, D. 1956. Rugosa. p. F233F324. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Hill, D. 1981. Rugosa and Tabulata, p. F1F762. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata, Supplement 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Jell, J. S. 1974. The microstructure of some scleractinian corals. Second International Coral Reef Symposium Proceedings:301320.Google Scholar
Johnston, I. S. 1977. Aspects of the structure of a skeletal organic matrix, and the process of skeletogenesis in the reef-coral Pocillopora damicornis. Third International Coral Reef Symposium Proceedings:447453.Google Scholar
Johnston, I. S. 1980. The ultrastructure of skeletogenesis in hermatypic corals. International Review of Cytology, 67:171214.Google Scholar
Kato, M. 1963. Fine skeletal structures in Rugosa. Journal of the Faculty of Science, Hokkaido University, Series IV, 11:571630.Google Scholar
Kissling, D. L. 1977. Population structure characteristics for some Paleozoic and modern colonial corals. Second Symposium Internationale sur les coraux et récifs coralliens fossile. Burearu des Recherches Géologique et Miniere, 89:497506.Google Scholar
Lafuste, J. 1983. Passage des microlamelles aux fibres dans le quelette d'un tabulé “Michelinimorphe” du Viseen du sahara algerien. Geobios, 16:755761.Google Scholar
Lafuste, J. 1984. Microstructure of Planalveolites Lang and Smith, 1939 (Tabulata, Silurian), p. 485488. In Oliver, W. A. Jr. et al. (eds.) Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Lafuste, J. 1987. Sous-classe des Tabulés, p. 815821. In Grassé, P. (ed.), Traité de Zoologie, Tome III, Cnidaires, Anthozoaires. Masson, Paris.Google Scholar
Lafuste, J., Plusquellec, Y., and Soto, F. 1993. Coexistence de lamelles et de microlamelles dans le sclérenchyume de “Ligulodictyum Plusquellec, 1973 (Tabulata, Dévonien du Nord-Gondwana). Courier Forschungsinstitut Senckenberg, 164:329337.Google Scholar
Ma, T. Y. H. 1933. On the seasonal change of growth in some Paleozoic corals. Proceedings Imperial Academy of Japan, 9:407409.Google Scholar
Morycowa, E., and Roniewicz, E. 1995. Microstructural disparity between Recent fungiine and Mesozoic microsolenine scleractinians. Acta Palaeontologica Polonica, 40:361385.Google Scholar
Oekentorp, K. 1972. Sekundärstrukturen bei paläozoischen Madreporaria. Münstersche Forschungen zur Geolologie und Paläontologie, 24:35108.Google Scholar
Oekentorp, K. 1980. Aragonit und diagenese bei jungpaläozoischen korallen. Münstersche Forschungen zur Geologie und Paläontologie, 52:119239.Google Scholar
Oekentorp, K. 1989. Diagenesis in corals: syntaxial cements as evidence for post-mortem skeletal thickenings. Association of Australasian Palaeontologists, Memoir 8: 169177.Google Scholar
Ogilvie, M. M. 1896. Microscopic and Systematic Study of Madreporarian Types of Corals. Philosophical Transactions of the Royal Society of London B, 187:83345.Google Scholar
Rodriguez, S. 1989. Lamellar microstructure in Palaeozoic corals: origin and use in taxonomy. Association of Australasian Palaeontologists, Memoir 8:157168.Google Scholar
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.Google Scholar
Roniewicz, E., and Morycowa, E. 1989. Triassic Scleractinia and the Triassic/Liassic boundary. Association of Australasian Palaeontologists, Memoir 8:347354.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Sandberg, P. A. 1975. Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. Journal of Paleontology, 49:587606.Google Scholar
Schindewolf, O. H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Abhandhandlungen des Reichsamts für Bodenforschung, Neue Folge, 204:1324.Google Scholar
Schouppe, A. Von, and Stacul, P. 1966. Morphogenese und bau des skelettes der Pterocorallia. Palaeontographica, Supplement, 11:1186.Google Scholar
Schouppe, A. Von, and Oekentorp, K. 1974. Morphogenese und bar des skelettes der Tabulata. Palaeontographica, A, 145: 79194.Google Scholar
Scrutton, C. T. 1965. Periodicity in Devonian coral growth. Palaeontology, 7:552558.Google Scholar
Semenoff-Tian-Chansky, P. 1984. Microstructure of Siphonodendron (Lithostrotionidae), p. 489500. In Oliver, W. A. Jr. et al (eds.) Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Semenoff-Tian-Chansky, P. 1987. Sous-classe des Tetracoralliaires, p. 765814. In Grassé, P. (ed.), Traité de Zoologie, Tome III, Cnidaires, Anthozoaires. Masson, Paris.Google Scholar
Sorauf, J. E. 1970. Microstructure and formation of dissepiments in the skeleton of the Recent Scleractinia (hexacorals). Biomineralisation Forschungsberichte, 2:222.Google Scholar
Sorauf, J. E. 1972. Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology, 15:88107.Google Scholar
Sorauf, J. E. 1977. Microstructure and magnesium content in Lophophyllidium from the Lower Pennsylvanian of Kentucky. Journal of Paleontology, 51:150160.Google Scholar
Sorauf, J. E. 1993. The coral skeleton: analogy and comparisons, Scleractinia, Rugosa, and Tabulata. Courier Forschungsinstitut Senckenberg, 164:6370.Google Scholar
Sorauf, J. E. 1996. Geochemical signature of incremental growth: rugose corals from the Middle Devonian Traverse Group, Michigan. Palaios, 11:6470.Google Scholar
Stanley, G. D., and Swart, P. K. 1995. Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology, 21:179199.Google Scholar
Swart, P. K. 1983. Carbon and oxygen isotope fractionation in scleractinian corals. Earth Sciences Review, 19:5180.Google Scholar
Swart, P. K., and Leder, J. J. 1996. The utility of stable isotopic signatures in coral skeletons. Paleontological Society Papers, 1:255295.Google Scholar
Vahl, J. 1966. Sublichtmikroskopische Untersuchungen der Kristallinen Grundbauelemente und der Matrixbeziehung zwischen Weichkorper und Skelett von Caryophyllia LAMARCK 1801. Zeitschrift der Morphologie und Ökologie der Tiere, 56:2138.Google Scholar
Wang, H. C. 1950. A revision of the Zoantharia Rugosa in the light of their minute skeletal structures. Philosophical transactions, Royal Society of London, Series B, 234:175246.Google Scholar
Wang, H. C., and Chen, J. Q. 1989. Microskeletal structures and classification of rugose corals. Association of Australasian Palaeontologists, Memoir 8:179190.Google Scholar
Wang, H. C., He, X. Y., Li, Y. X., Li, Z. M., and Chen, J. Q. 1989. Classification, Evolution and Biogeography of the Palaeozoic corals of China. Science Press, Beijing, 391 p.Google Scholar
Wells, J. W. 1963. Coral growth and geochronometry. Nature, 197:948950.Google Scholar
Weidlich, O., and Bernecker, M. 1991. Comparative analysis of cementation in brachiopods and corals (Paleocene coral limestone, Fakse/Denmark). Neues Jahrbuch von Geologie und Paläontologie, 1991:615628.Google Scholar
Wise, S. W. 1970. Scleractinian coral exoskeletons: surface microarchitecture and attachment scar patterns. Science, 169:978980.CrossRefGoogle ScholarPubMed
Wise, S. W. 1972. Observation of fasciculi on developmental surfaces of scleractinian coral exoskeletons. Biomineralization Forschungsberichte, 6:160175.Google Scholar