Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T01:04:59.043Z Has data issue: false hasContentIssue false

Combining Uniformitarian and Historical Data to Interpret How Earth Environment Influenced the Evolution of Ichthyopterygia

Published online by Cambridge University Press:  21 July 2017

Ryosuke Motani*
Affiliation:
Department of Geology University of California, Davis One Shields Avenue Davis, CA 95616
Get access

Abstract

How Earth and organisms interacted in the past is one of the largest questions in paleobiology. Observed histories of organisms and Earth environments need to be linked under a set of uniformitarian assumptions to address this question. Functional morphology, which studies how organismal body parts interact with their physical environments, is an important tool in establishing the link. Being uniformitarian or ergodic, functional morphology is most robust when directly incorporating physical (or mechanical) principles into hypotheses and their tests. Such ‘physical functional morphology’ may not be always possible, but the number of examples is slowly increasing. Once a series of robust functional inferences are made, it may be possible to study its correlation or correspondence with the historical record of environmental proxies. This framework was applied to the Mesozoic marine reptiles Ichthyopterygia, which is known for the evolution of fish-shaped body profiles in the derived clade Parvipelvia. A suite of evidence suggests that parvipelvians had advanced cruising ability and dark-adapted vision that were lacking in the more basal forms, which they replaced during the major marine transgression between the latest Anisian (Middle Triassic) and the middle Norian (Late Triassic). The ability to forage in broader expanses of and deeper water may have enabled parvipelvians to survive when shallow water environments became reduced during the major regression phase, but much more study is needed to test such an inference.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences, 98:62616266.Google Scholar
Buchholtz, E. 2001. Swimming styles in Jurassic ichthyosaurs. Journal of Vertebrate Paleontology, 21:6173.CrossRefGoogle Scholar
Carroll, R. L. 1997. Patterns and Processes of Vertebrate Evolution. Cambridge University Press. 448 pp.Google Scholar
Collette, B. B., and Nauen, C. E. 1983. FAO Species Catalogue Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fisheries Synopsis 125. 137 p.Google Scholar
Compagno, L.J.V. 2001. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Volume 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO Species Catalogue for Fishery Purposes 1. 269 p.Google Scholar
Freidman, J. H. 1989. Regularized Discriminant Analysis. Journal of the American Statistical Association, 84:165175.CrossRefGoogle Scholar
Frith, H. R., and Blake, R. W. 1995. The mechanical power output and hydormechanical efficiency of Northern Pike (Esox lacius) fast-starts. Journal of Experimental Biology, 198:18631873.Google Scholar
Gatsey, S. M. and Dial, K. P. 1996. Locomotor modules and the evolution of avian flight. Evolution 50:331340.CrossRefGoogle Scholar
Gradstein, F.M., Ogg, J.G., and Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L.A., House, M.R., Lourens, L., Luterbacher, H.P., McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R., Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Plumb, K.A., Powell, J., Raffi, I., Röhl, U., Sadler, P., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., Van Kolfschoten, T., Veizer, J., and Wilson, D. 2005. A Geologic Time Scale 2004. Cambridge University Press, 589 p.Google Scholar
Guo, Y., Hastie, T., and Tibshirani, R. 2005. Regularized discriminant analysis and its application in microarrays. Biostatistics, 1:118.Google Scholar
Hastie, T., Buja, A., and Tibshirani, R. 1995. Penalized Discriminant Analysis. Annals of Statistics, 23:73102.Google Scholar
Hastie, T., and Tibshirani, R. 1996. Discriminant Analysis by Gaussian Mixtures. Journal of the Royal Statistical Society B, 58:158176.Google Scholar
Hastie, T., Tibshirani, R., and Buja, A. 1994. Flexible Discriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89:12551270.Google Scholar
Heesy, C. 2008. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals. Brain Behavior and Evolution, 71:5467.Google Scholar
Hinic-Frlog, S., and Motani, R. In review. Correlation of osteology and aquatic locomotion in birds: Determining locomotor modes of extinct Hesperornithiformes.Google Scholar
Jefferson, T. A., Leatehrford, S., and Webber, M. A. 1993. FAO species identification guide. Marine mammals of the world. FAO, Rome 320 p.Google Scholar
Jiang, D.-Y., Motani, R., Li, C., Hao, W.-C., Sun, Y.-L., Sun, Z.-Y., and Schmitz, L. 2005. Guanling Biota: A marker of Triassic biotic recovery from the end-Permian extinction in the ancient Guizhou Sea. Acta Geologica Sinica (English ed.), 79:729738.Google Scholar
Kirton, A. M. 1983. A review of British Upper Jurassic ichthyosaurs. , University of Newcastle-upon-Tyne, 239 p. (The British Library Document Supply Centre, Boston Spa, Yorkshire, thesis number D 47227).Google Scholar
Lauder, G. V. 1995. On the inference of function from structure. p. 118. In Thomason, J. J., (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge.Google Scholar
Li, C. 1999. [A preliminary study of a new ichthyosaur from the Triassic of Guizhou.] Chinese Science Bulletin, 44:13181321 [in Chinese].Google Scholar
Lindberg, D. R., and Pyenson, N. D. 2007. Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the Tertiary. Lethaia, 40:335343.Google Scholar
Maisch, M. W., and Matzke, A. T. 2000. The Ichthyosauria. Stuttgarter Beiträge zur Naturkunde, Serie B, 298:1159.Google Scholar
Martin, G. R. 1983. Schematic eye models in vertebrates. In Ottoson, D, editor. Progress in sensory physiology, Vol. 4. Berlin, Heidelberg, New York: Springer–Verlag. p. 4382.Google Scholar
Massare, J. A. 1988. Swimming capabilities of Mesozoic marine reptiles: implications for method of predation. Paleobiology, 14:187205.Google Scholar
McGowan, C. 1992. The ichthyosaurian tail: sharks do not provide an appropriate analogue. Palaeontology, 35:555570.Google Scholar
McGowan, C. 1996. A new and typically Jurassic ichthyosaur from the Upper Triassic of British Columbia. Canadian Journal of Earth Sciences, 33:2432.Google Scholar
McGowan, C., and Motani, R. 2003. Ichthyopterygia. Handbuch der Paläoherpetologie Part 8. Verlag Dr. Friedrich Pfeil, München. 175 p.Google Scholar
Motani, R. 1998. Ichthyosaurian swimming revisited: implications from the vertebral column and phylogeny. Journal of Vertebrate Paleontology, 18:65A.Google Scholar
Motani, R. 1999. Phylogeny of the Ichthyopterygia. Journal of Vertebrate Paleontology, 19:472495.Google Scholar
Motani, R. 2002a. Scaling effects in caudal fin kinematics and the speeds of ichthyosaurs. Nature, 415:309312.CrossRefGoogle ScholarPubMed
Motani, R. 2002b. Swimming speed estimation of extinct marine reptiles: energetic approach revisited. Paleobiology, 28:251262.Google Scholar
Motani, R. 2005. Ichthyosauria: evolution and physical constraints of fish-shaped reptiles. Annual Review of Earth and Planetary Sciences, 33:395420.CrossRefGoogle Scholar
Motani, R., Rothschild, B. M., and Wahl, W. Jr. 1999. Large eyes in deep diving ichthyosaurs. Nature 402: 747.Google Scholar
Motani, R., You, H., and McGowan, C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature, 382:347348.Google Scholar
Nicholls, E. L., Chen, W., and Manabe, M. 2002. New material of Qianichthyosaurus Li, 1999 (Reptilia, Ichthyosauria) from the Later Triassic of Southern China, and implication for the distribution of Triassic ichthyosaurs. Journal of Vertebrate Paleontology, 22:759765.Google Scholar
O'Keefe, F. R. and Carrano, M. T. 2005. Correlated trends in the evolution of the plesiosaur locomotor system.Google Scholar
Rattenborg, N. C., Amlaner, C. J., and Lima, S. L. 2000. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neuroscience and Biobehavioral Reviews, 24:817842.CrossRefGoogle ScholarPubMed
Sander, P. M. 2000. Ichthyosauria: their diversity, distribution, and phylogeny. Paläontologische Zeitschrift, 74:135.Google Scholar
Sander, P. M., and Faber, C. 1998. New finds of Omphalosaurus and a review of Triassic ichthyosaur paleobiogeography. Paläontologische Zeitschrift, 72:149162.Google Scholar
Schmitz, L. In review. Quantitative estimates of visual performance features in fossil birds. Journal of Morphology.Google Scholar
Schmitz, L., Motani, R., and Milner, A. C. In review. Diel activity pattern of Archaeopteryx inferred by scleral ring morphology and visual optics. Proceedings B. Google Scholar
Schreer, J. F., and Kovacs, K. M. 1997. Allometry of diving capacity in air-breathing vertebrates. Canadian Journal of Zoology, 75:339358.Google Scholar
Seeley, H. G. 1908. On the extremity of the tail in Ichthyosauria. Annals and Magazines of Natural History, 8:436441.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363, 560 p.Google Scholar
Walls, G. L. 1942. The vertebrate eye and its adaptive radiation. New York: Hafner Pub. Co. 785 pp.Google Scholar
Webb, P. W. 1978. Fast-start performance and body form in seven species of teleost fish. Journal of Experimental Biology, 74:211226.Google Scholar
Wiman, C. 1910. Ichthyosaurier aus der Trias Spitzbergens. Bulletin of the Geological Institution of the University of Upsala, 10:124148.Google Scholar
Yin, G., Zhou, X., Cao, Z., Yu, Y., and Luo, Y. 2000. [A preliminary study on the early Late Triassic marine reptiles from Guanling, Guizhou, China.] Geology-Geochemistry, 28(3): 123 [in Chinese].Google Scholar