Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:27:06.405Z Has data issue: false hasContentIssue false

FOSSIL SECRETS REVEALED: X-RAY CT SCANNING AND APPLICATIONS IN PALEONTOLOGY

Published online by Cambridge University Press:  27 April 2017

Rachel Racicot*
Affiliation:
The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA 〈rracicot@nhm.org〉
Get access

Abstract

X-ray computed tomography (CT) provides a nondestructive means of studying the inside and outside of objects. It allows accurate visualization and measurement of internal features, that are otherwise impossible to obtain nondestructively, and is a lasting digital record that can be made available to future researchers, museums, and the general public. Here, an overview of CT scanning methodologies and protocol is provided, as well as some recent examples of how this technology is allowing paleontologists to make new inroads into understanding the ecology, evolution, and development of both extant and extinct organisms. Lastly, some frontiers and outstanding questions in the acquisition, processing, and storage of digital 3-D morphological data are highlighted.

Type
Research Article
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L., 1833−1843, Recherches sur les Poissons Fossiles, 5 volumes: Neuchâtel, Switzerland, Imprimerie de Patitpierre, 1420 p.Google Scholar
Ahrens, H.E., 2014, Morphometric study of phylogenetic and ecologic signals in procyonid (Mammalia: Carnivora) endocasts: The Anatomical Record, v. 297, p. 23182330.CrossRefGoogle ScholarPubMed
Alonso, P.D, Milner, A.C., Ketcham, R.A, Cookson, M.J., and Rowe, T.B., 2004, The avian nature of the brain and inner ear of Archaeopteryx : Nature, v. 430, p. 666669.CrossRefGoogle ScholarPubMed
Andrews, C.W., 1904, Further notes on the mammals of the Eocene of Egypt, Part III: Geological Magazine, 5, v. 1, p. 211215.Google Scholar
Andrews, C.W., 1906, A descriptive catalogue of the Tertiary Vertebrata of the Fayûm, Egypt: London, British Museum (Natural History), 324 p.Google Scholar
Balanoff, A.M., Bever, G.S., Colbert, M.W., Clarke, J.A., Field, D.J., Gignac, P.M., Ksepka, D.T., Ridgely, R.C., Smith, N.A., Torres, C.R., Walsh, S., and Witmer, L.M., 2015, Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. Journal of Anatomy, DOI: 10.1111/joa.12378.CrossRefGoogle Scholar
Balanoff, A.M., Bever, G.S., Rowe, T.B., and Norell, M.A., 2013, Evolutionary origins of the avian brain: Nature, v. 501, p. 9397.Google Scholar
Bates, K.T., and Falkingham, P.L., 2012, Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics: Biology Letters, v. 8, p. 660664.Google Scholar
Bever, G.S., Lyson, T.R., Field, D.J., and Bhullar, B.-A.S., 2015, Evolutionary origin of the turtle skull: Nature, v. 525, p. 239242.Google Scholar
Boyer, D., 2016, Virtual fossils revolutionise the study of human evolution: https://aeon.co/opinions/virtual-fossils-revolutionise-the-study-of-human-evolution (accessed 4 April 2016).Google Scholar
Bourke, J.M., Porter, W., Ridgely, R.C., Lyson, T.R., Schachner, E.R., Bell, P.R., and Witmer, L.M., 2014, Breathing life into dinosaurs: Tackling challenges of soft-tissue restoration and nasal airflow in extinct species: The Anatomical Record, v. 297, p. 2418–2186.CrossRefGoogle ScholarPubMed
Burrows, A.M., and Smith, T.D., 2005, Form and patterns of the external aspect of the brain and superficial dural venous sinuses of the river dolphins (Cetacea: Odontoceti) from endocasts and their bearing on phylogenetic reconstruction: Annals of Carnegie Museum, v. 74, p. 201215.Google Scholar
Conroy, G.C., and Vannier, M.W., 1984, Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography: Science, v. 226, p. 456458.CrossRefGoogle ScholarPubMed
Costidis, A., and Rommel, S.A., 2012, Vascularization of air sinuses and fat bodies in the head of the bottlenose dolphin (Tursiops truncatus): Morphological implications on physiology: Frontiers in Physiology, v. 3, p. 123.Google Scholar
Costidis, A., and Rommel, S.A., 2016a, The extracranial arterial system in the heads of beaked whales, with implications on diving physiology and pathogenesis: Journal of Morphology, v. 277, p. 533.CrossRefGoogle ScholarPubMed
Costidis, A., and Rommel, S.A., 2016b, The extracranial venous system in the heads of beaked whales, with implications on diving physiology and pathogenesis: Journal of Morphology, v. 277, p. 3464.Google Scholar
Cranford, T.W., and Krysl, P., 2015, Fin whale sound reception mechanisms: Skull vibration enables low-frequency hearing: PLoS ONE, v. 10, p. e0116222, DOI: 10.1371/journal.pone.0122298.Google Scholar
Cunningham, J.A., Rahman, I.A., Lautenschlager, S., Rayfield, E.J., and Donoghue, P.C.J., 2014, A virtual world of paleontology: Trends in Ecology and Evolution, v. 29, p. 347357.Google Scholar
Edholm, P., and Gabor, H., 1987, Linograms in image reconstruction from projections: IEEE Transactions on Medical Imaging, v. MI–6, p. 301307.Google Scholar
Ekdale, E.G., and Racicot, R.A., 2015, Anatomical evidence for low frequency sensitivity in the inner ear of Zygorhiza kochii (Cetacea, Basilosauridae): Journal of Anatomy, v. 226, p. 2239.Google Scholar
Feldkamp, L.A., Davis, L.C., and Kress, J.W., 1984, Practical cone-beam algorithm: Journal of the Optical Society of America, v. 1, p. 612619.Google Scholar
Franzosa, J., 2001, Herrerasaurus ischigualastensis†, Primitive Dinosaur, Digimorph: http://digimorph.org/specimens/Herrerasaurus_ischigualastensis/ (accessed 4 April 2016).Google Scholar
Galera, A.M., 2013, Data processing toolbox for PET scanners [Master’s thesis]: Tampere, Finland, Tampere University of Technology, 86 p.Google Scholar
Gignac, P. M., Kley, N.J., Clarke, J.A., Colbert, M.W., Morhardt, A.C., Cerio, D., Cost, I.N., Cox, P.G., Daza, J.D., Early, C.M., Echols, M.S., Henkelman, R.M., Herdina, A.N., Holliday, C.M., Li, Z., Mahlow, K., Merchant, S., Müller, J., Orsbon, C.P., Paluh, D.J., Thies, M.L., Tsai, H.P., and Witmer, L.M., 2016, Diffusable iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues: Journal of Anatomy, v. 228, p. 889909.Google Scholar
Glaessner, M.F., and Daily, B., 1959, The geology and late Precambrian fauna of the Ediacara fossil reserve: Records of the South Australian Museum, v. 13, p. 369401.Google Scholar
Haubitz, B., Prokop, M., Dohring, W., Ostrom, J.H., and Wellnhofer., P., 1988, Computed tomography of Archaeopteryx : Paleobiology, v. 14, p. 206213.Google Scholar
Holliday, C.M., Ridgley, R.C., Balanoff, A.M., and Witmer, L.M., 2006, Cephalic vascular anatomy in flamingos (Phoenicopterus ruber) based on novel vascular injection and computed tomographic imaging analyses: The Anatomical Record, v. 288A, p. 10311041.Google Scholar
Keogh, M.J., and Ridgway, S.H., 2008, Neuronal fiber composition of the corpus callosum within some odontocetes: The Anatomical Record, v. 291, p. 781789.CrossRefGoogle ScholarPubMed
Ketcham, R.A., and Carlson, W.D., 2001, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences: Computers & Geosciences, v. 27, p. 381400.CrossRefGoogle Scholar
Kirk, E.C., Daghighi, P., Macrini, T.E., Bhullar, B.A., and Rowe, T.B., 2014, Cranial anatomy of the Duchesnean primate Rooneyia viejaensis: New insights from high resolution computed tomography: Journal of Human Evolution, v. 74, p. 8295.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentis, Synonymis, Locis, 10th ed., Stockholm, Sweden, Laurentii, Slavi, 824 p.Google Scholar
Metscher, B.D., 2009, MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues: BMC Physiology, v. 9, p. 11.Google Scholar
Meyer, H. von, 1861, Archaeopteryx litographica (Vogel-Feder) und Pterodactylus von Solenhofen: Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, v. 1861, p. 678679.Google Scholar
Montgomery, J.C., and Saunders, A.J., 1985, Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding: Proceedings of the Royal Society London, B Biological Sciences, v. 224, p. 197208.Google Scholar
Osborn, H.E., 1905, Tyrannosaurus and other Cretaceous carnivorous dinosaurs: Bulletin of the American Museum of Natural History, v. 21, p. 259265.Google Scholar
Polly, P.D., Statyon, C.T., Dumont, E.R., Pierce, S.E., Rayfield, E.J., and Angielcyzk, K.D., 2016, Combining geometric morphometrics and finite element analysis with evolutionary modeling: Towards a synthesis: Journal of Vertebrate Paleontology, v. 36, p. e1111225, DOI: 10.1080/02724634.2016.2016.1111225.Google Scholar
Racicot, R.A., and Berta, A., 2013, Comparative morphology of porpoise Cetacea: Phocoenidae pterygoid sinuses: Phylogenetic and functional implications: Journal of Morphology, v. 274, p. 4962.Google Scholar
Racicot, R.A., and Colbert, M.W., 2013, Morphology and variation in porpoise (Cetacea: Phocoenidae) cranial endocasts: The Anatomical Record, v. 296, p. 979992.Google Scholar
Racicot, R.A., Deméré, T.A., Beatty, B.L., and Boessenecker, R.W., 2014, Unique feeding morphology in a new prognathous extinct porpoise from the Pliocene of California: Current Biology, v. 24, p. 774779.Google Scholar
Racicot, R.A., Gearty, W., Kohno, N., and Flynn, J.J., 2016, Comparative anatomy of the bony labyrinth of extant and fossil porpoises (Mammalia: Cetacea: Phocoenidae): Biological Journal of the Linnean Society, DOI: 10.1111/bij.12857.Google Scholar
Racicot, R.A., and Rowe, T.B., 2014, Endocranial anatomy of a new fossil porpoise (Odontoceti, Phocoenidae) from the Pliocene San Diego Formation of California: Journal of Paleontology, v. 88, p. 652663.Google Scholar
Rahman, I.A., Adcock, K., and Garwood, R.J., 2012, Virtual fossils: A new resource for science communication in paleontology: Evolution: Education and Outreach, v. 5, p. 635641.Google Scholar
Rahman, I.A., Darroch, S.A.F., Racicot, R.A., and Laflamme, M., 2015, Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems: Science Advances, v. 1, p. e1500800, DOI: 10.1126/sciadv.1500800.Google Scholar
Rayfield, E.J., 2007, Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms: Annual Review of Earth and Planetary Sciences, v. 35, p. 541576.Google Scholar
Reig, O.A., 1963, La presencia de dinosaurios saurisquios en los ‘Estratos de Ischigualasto’ (Mesotriásico Superior) de las provincias de San Juan y La Rioja (República Argentina): Ameghiniana, v. 3, no. 1, p. 320.Google Scholar
Rowe, T.B., Macrini, T.E., and Luo, Z., 2011, Fossil evidence on the origin of the mammalian brain: Science, v. 332, p. 955957.Google Scholar
Sedlmayr, J.C., and Witmer, L.M., 2002, Rapid technique for imaging the blood vascular system using stereoangiography: The Anatomical Record, v. 267, p. 330336.Google Scholar
Seeley, H., 1892, On a new reptile from Welte Vreden (Beaufort West) Eunotosaurus africanus (Seeley): Quarterly Journal of the Geological Society, v. 48, p. 583585.Google Scholar
Siveter, D.J., Tanaka, G., Farrell, Ú., Martin, M.J., Siveter, D.J., and Briggs, D.E.G., 2014, Exceptionally preserved 450-million-year-old Ordovician ostracods with brood care: Current Biology, v. 24, p. 801806.Google Scholar
Smith, N.A., and Clarke, J.A., 2012, Endocranial anatomy of the Charadriiformes: Sensory system variation and the evolution of wing-propelled diving: PLoS ONE, v. 7, p. e49584, DOI: 10.1371/journal.pone.0049584.Google Scholar
Snively, E., Fahlke, J., and Welsh, R., 2015, Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea) from the late Eocene of Egypt estimated by finite element analysis: PLoS ONE, v. 10, p. e0118380, DOI: 10.1371/journal.pone.0118380.Google Scholar
Spoor, F., Garland, T., Krovitz, G., Ryan, T.M., Silcox, M.T., and Walker, A., 2007, The primate semicircular canal system and locomotion: Proceedings of the National Academy of Sciences USA, v. 104, p. 1080810812.Google Scholar
Sutton, M.D., Rahman, I.A., and Garwood, R.J., 2014, Techniques for Virtual Palaeontology: West Sussex, UK, John Wiley & Sons, 200 p.Google Scholar
Uher, J., Jakubek, J., Mayo, S., Stevenson, A., and Tickner, J., 2011, X-ray beam hardening based material recognition in micro-imaging: Journal of Instrumentation, v. 6, p. p08015, DOI: 10.1088/1748-0221/6/08/P08015.Google Scholar
Wilson, J.A., 1966, A new primate from the earliest Oligocene, West Texas, preliminary report: Folia Primatologica, v. 4, p. 227248.Google Scholar
Wroe, S., Huber, D.R., Lowry, M., McHenry, C., Moreno, K., Clausen, P., Ferrara, T.L., Cunningham, E., Dean, M.N., and Summers, A.P., 2008, Three-dimensional computer analysis of white shark jaw mechanics: How hard can a great white bite?: Journal of Zoology, v. 276, p. 336342.Google Scholar
Zusi, R.L., 1962, Structural Adaptations of the Head and Neck in the Black Skimmer Rynchops nigra Linnaeus: Cambridge, Massachusetts, Nuttall Ornithological Club, 101 p.CrossRefGoogle Scholar