Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:50:53.610Z Has data issue: false hasContentIssue false

Functional Morphology and Biomechanics of Articulate Brachiopod Shells

Published online by Cambridge University Press:  21 July 2017

Richard R. Alexander*
Affiliation:
Department of Geological and Marine Sciences, Rider University, Lawrenceville, NJ 08648-3099 USA
Get access

Extract

In the first Paleontological Society short course dealing with functional morphology of extinct brachiopod taxa, Grant (1981, p. 127) emphasized analogy with living species in reconstruction of life habits, but then cited many pitfalls of taxonomic uniformitarianism. The present is hardly the key as to how brachiopod shells functioned in the past, given the plethora of morphologic structures that have vanished since the Paleozoic diversity climax of articulates. Although direct observations (Table 1), such as clasping spines encircling a blastoid columnal (Grant, 1963), or biomechanical tests (e.g., Thayer, 1975a) and flume experiments (e.g., LaBarbera, 1978) on living articulate brachiopods, enable convincing assertion of a morphologic structure's function, indirect methodologies (Savazzi, 1999)(Table 1) have supplanted mere analogies with living brachiopods. Indirect methodologies (Savazzi, 1999, p. 6) reconstruct and infer the function of skeletal structures from theoretical (morphospace) and actual scaled models of extinct taxa, hydrodynamic and biomechanical tests on empty shells, commensal associations with fossilized epibionts, clinal variations in structures over paleogeographic and paleobathymetric gradients, and post-mortem, post-burial orientational evidence. The common denominator of indirect methodologies is that inferences are made on dead shells usually, but not always, from extinct taxa. Although such inferences of skeletal function of extinct taxa vary in the rigor by which they are deduced, indirect methodologies have been increasingly refined over the last 20 years (Table 1).

Type
Research Article
Copyright
Copyright © 2001 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerley, S. C. 1991. Rapid shell closure in Recent Terebratulidea and Paleozoic Orthidea, p. 177182. In MacKinnon, D. I., Lee, D., and Campbell, J. D. (eds.), Brachiopods Through Time. A. A. Balkema, Rotterdam.Google Scholar
Ackerley, S. C. 1992. The origin and geometry of radial ribbing patterns in articulate brachiopods. Lethaia, 25:243248.CrossRefGoogle Scholar
Ackerley, S. C., Cisne, J. L., Railsback, L. B., and Anderson, T. F. 1993. Punctal density in the Ordovician orthide brachiopod Paucicrura rogata: anatomical and paleoenvironmental variation. Lethaia, 26:1724.Google Scholar
Ager, D. V. 1967. Brachiopod paleoecology. Earth Science Reviews, 3:157179.Google Scholar
Ager, D. V. 1987. Why the rhynchonellid brachiopods survived and the spirferids did not: a suggestion. Palaeontology, 30:853857.Google Scholar
Aldridge, A. E. 1981. Intraspecific variation of shape and size in subtidal populations of two Recent New Zealand articulate brachiopods. New Zealand Journal of Zoology, 8:169174.CrossRefGoogle Scholar
Alexander, R. R. 1975. Phenotypic lability of the brachiopod Rafinesquina alternata (Ordovician) and its correlation with the sedimentologic regime. Journal of Paleontology, 49:607618.Google Scholar
Alexander, R. R. 1977. Generic longevity of articulate brachiopods in relation to the mode of stabilization on the substrate. Palaeogeography, Paleoclimatology, Palaeoecology, 21:209226.Google Scholar
Alexander, R. R. 1981. Predation scars preserved in Chesterian brachiopods: Probable culprits and evolutionary consequences for the articulates. Journal of Paleontology, 55:192203.Google Scholar
Alexander, R. R. 1984. Comparative hydrodynamic stability of brachiopod shells on current- scoured arenaceous substrates. Lethaia, 17:1732.Google Scholar
Alexander, R. R. 1986a. Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods. Journal of Paleontology, 60:273285.Google Scholar
Alexander, R. R. 1986b. Frequency of sublethal shell-breakage in articulate brachiopod assemblages through geologic time, p. 159166. In Racheboeuf, P. R. and Emig, C. C. (eds.), Les Brachiopods Fossils et Actuels, First International Brachiopod Congress, Biostratigraphie du Paleozoique 4.Google Scholar
Alexander, R. R. 1986c. Life orientation and post-mortem re-orientation of Chesterian brachiopod shells by paleocurrents. Palaios, 1:303311.Google Scholar
Alexander, R. R. 1987. Intraspecific selective survival within variably uniplicate Late Devonian brachiopods. Lethaia, 20:315325.Google Scholar
Alexander, R. R. 1989. Influence of valve geometry, ornamentation, and microstructure on fractures in Late Ordovician brachiopods. Lethaia, 22:133147.Google Scholar
Alexander, R. R. 1990a. Mechanical strength of shells of selected extant articulate brachiopods: implications for Paleozoic morphologic trends. Historical Biology, 3:169188.Google Scholar
Alexander, R. R. 1990b. Disarticulated shells of Late Ordovician brachiopods: inferences of strength of hinge and valve architecture. Journal of Paleontology, 64:524532.Google Scholar
Alexander, R. R. 1994. Distribution of pedicle boring traces and the life habit of Late Paleozoic leiorhynchid brachiopods from dysoxic habitats. Lethaia, 27:227234.Google Scholar
Alexander, R. R. 1999a. Functional morphology of external characteristics of articulate brachiopods, p. 371398. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Inc., New York.Google Scholar
Alexander, R. R. 1999b. Function of shell microstructures and internal morphology of articulate brachiopods, p. 399414. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton, John Wiley & Sons, Inc., New York.Google Scholar
Alexander, R. R., and Gibson, M. A. 1993. Paleozoic brachiopod autecology based on taphonomy; example from the Devonian Ross Formation of Tennessee (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 10:2535.CrossRefGoogle Scholar
Alexander, R. R., and Schopf, C. 1990. Epizoans on Late Ordovician brachiopods from southeastern Indiana. Historical Biology, 4:179202.Google Scholar
Alvarez, F., and Brunton, C. H. C. 1990. The shell-structure, growth and functional morphology of some Lower Devonian athyrids from northwest Spain. Lethaia, 23:117131.CrossRefGoogle Scholar
Alvarez, F., and Taylor, P. D. 1987. Epizoan and Interactions in the Devonian of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 61:1731.Google Scholar
Alvarez, F., Brime, C., and Curry, G. B. 1987. Growth and function of the micro-frills present on the Devonian brachiopod Athyris campomanesi (Verneuil & Archiac). Transactions of the Royal Society of Edinburgh Earth Sciences, 78:6572.Google Scholar
Amsden, T. W. 1975. Hunton group in the Anadarko Basin of Oklahoma. Oklahoma Geological Survey Bulletin, 121:1214.Google Scholar
Bassett, M. G. 1970. Variation in the cardinalia of the brachiopod Ptychopleurella bouchardi (Davidson) from the Wenlock Limestone of Wenlock Edge, Shropshire. Palaeontology, 13:297302.Google Scholar
Baumiller, T. K., Leighton, L., and Thompson, D. L. 1999. Boreholes in Mississippian spriferide brachiopods and their implications for Paleozoic gastropod drilling. Palaeogeography, Palaeoclimatology, Palaeoecology, 147:283289.CrossRefGoogle Scholar
Blake, D. B., and Guensburg, T. E. 1988. The water vascular system and functional morphology of Paleozoic asteroids. Lethaia, 21:189206.CrossRefGoogle Scholar
Bolton, J. C. 1990. Sedimentological data indicate greater range of water depths for Costricklandia lirata in the southern Appalachians. Palaios, 5:371374.CrossRefGoogle Scholar
Bordeaux, Y. L., and Brett, C. E. 1990. Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology. Historical Biology, 4:203220.CrossRefGoogle Scholar
Brunton, C. H. C. 1968. Silicified brachiopods of the Visean of county Fermanagh. II. Bulletin of the British Museum (Natural History), Geology, 16:170.Google Scholar
Brunton, C. H. C. 1982. The functional morphology and palaeoecology of the Dinantian brachiopod Levitusia . Lethaia, 15:149168.Google Scholar
Brunton, C. H. C. 1985. Growth and shell shape in Productacean brachiopods. Bulletin of the British Museum (Natural History), Geology 28:273281.Google Scholar
Brunton, C. H. C. 1991. Shut tightly and protected, p. 197202. In MacKinnon, D. I., Lee, D., and Campbell, J. D. (eds.), Brachiopods Through Time. A. A. Balkema. Rotterdam.Google Scholar
Brunton, C. H. C. 1992. Evolutionary trends in the articulate brachiopod hinge mechanism. Paleobiology, 18:344366.Google Scholar
Carlson, S. J. 1989. The articulate brachiopod hinge mechanism: morphological and functional variation. Paleobiology, 15:364386.Google Scholar
Carter, J. G. 1980. Environmental and biological controls of bivalve shell mineralogy and microstructure, p. 69114. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms, Topics in Geobiology 1. Plenum Press, New York.Google Scholar
Cocks, L. R. M. 1970. Silurian Brachiopods of the Superfamily Plectambonitacea. Bulletin of the British Museum (Natural History), Geology, 19:141203.Google Scholar
Copper, P. 1986. Filter-feeding and evolution in early spire-bearing brachiopods, p. 219220. In Racheboeuf, P. R. and Emig, C. C. (eds.), Les Brachiopods Fossils et Actuels, First International Brachiopod Congress, Biostratigraphie du Paleozoique 4.Google Scholar
Cowen, R. 1970. Analogies between the Recent bivalve Tridacna and the fossil brachiopods Lyttoniacea and Richthofeniacea. Palaeogeography, Palaeoclimatology, and Palaeoecology, 8:329344.Google Scholar
Cowen, R. 1975. “Rapping valves” in brachiopods. Lethaia, 8:2329.Google Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in the fossil record, p. 431480. In Tevesz, M. and McCall, P. L. (eds.), Biotic Interactions In Recent And Fossil Benthic Communities, Topics in Geobiology 3. Plenum Press, New York.Google Scholar
Cowen, R., and Rudwick, M. J. S. 1970. Deltidial spines in the Triassic brachiopod Bittnerula . Paleontologische Zeitschrift, 44:8285.CrossRefGoogle Scholar
Cuffey, C. A., Robb, A. J. III, Lembcke, J. T., and Cuffey, R. J. 1995. Epizoic bryozoan and corals as indicators of life and post-mortem orientations of the Devonian brachiopod Meristella . Lethaia, 28:139154.Google Scholar
Curry, G. B. 1983a. Microborings in recent brachiopods and the function of caeca. Lethaia, 16:119127.Google Scholar
Curry, G. B. 1983b. Ecology of the Recent deep water rhynchonellid brachiopod Cryptopora from the Rockall Trough. Palaeogeography, Palaeoclimatology, Palaeoecology, 44:93102.Google Scholar
Curry, G. B., and Ansell, A. D. 1986. Tissue mass in living brachiopods, p. 231242. In Racheboeuf, P. R. and Emig, G. C. (eds.), Les Brachiopods Fossils et Actuels, First International Brachiopod Congress, Biostratigraphie du Paleozoique 4.Google Scholar
Dietl, G. P., and Kelley, P. H. 2001. Mid-Paleozoic latitudinal predation gradient: Distribution of brachiopod ornamentation reflects shifting Carboniferous climate. Geology, 29:111114.Google Scholar
Donovan, S. K., and Gale, A. S. 1990. Predatory asteroids and the decline of the articulate brachiopods. Lethaia, 23:7786.Google Scholar
Faber, P., Vogel, K., and Winter, J. 1977. Beziehungen zwischen morphologischen Merkmalen der brachiopoden und Facies, dargstellt an Beispielen des Mitteldevons der Eifel und Sudmarokkos. Neues Jarbuch Geologie und Palaontologie Abhandlung, 154:2160.Google Scholar
Feldman, H. R. 1977. Paleoecology and morphologic variation of a Paleocene Terebratulide (Oleneothyris harlani) from the Hornerstown Formation of New Jersey. Journal of Paleontology, 51:86197.Google Scholar
Ferguson, L. 1985. Development of successive sets of halteroid spines in Eomarginifera longispina (Sowerby) in response to changing position of the shell during ontogeny and its taxonomic implications, p. 255263. In Racheboeuf, P. R. and Emig, C. C. (eds.), Les Brachiopods Fossils et Actuels, First International Brachiopod Congress, Biostratigraphie du Paleozoique 4.Google Scholar
Ferguson, L. 2000. Brood pouches of Late Permian productide brachiopods may have a similar paleobiogeographic significance to marsupia of Cainozoic cold water echinoids, and may help corroborate the northward drift of northwest pangea in the Late Paleozoic. Abstracts, The Millenium Brachiopod Congress.Google Scholar
Ferguson, L., and Williams, R. M. 1995. Relationship of spinosity and shell size of waagenochonchid brachiopods to sediment grain size: Permo-Pennsylvanian, Yukon, p. 28. In Copper, P. and Jin, J. (eds), Abstracts, 3rd International Brachiopod Congress. Laurentian University, Sudbury, Canada.Google Scholar
Foster, M. W. 1974. Recent Antarctic and subantarctic brachiopods. Antarctic Research Series, 2: 1183.Google Scholar
Fursich, F. T., and Hurst, J. M. 1974. Environmental factors determining the distribution of brachiopods. Palaeontology, 17:879900.Google Scholar
Gill, E. D. 1969. Notanopliidae, a new family of Paleozoic Brachiopods from Australia. Journal of Paleontology, 43:12221231.Google Scholar
Grant, R. E. 1963. Unusual attachment of a Permian linoproductide brachiopod. Journal of Paleontology, 37:134140.Google Scholar
Grant, R. E. 1966. Spine arrangements and life habits of the productoid brachiopod Waagenoconcha . Journal of Paleontology, 40:10631069.Google Scholar
Grant, R. E. 1968. Structural adaptations in two Permian brachiopod genera, Salt Range, West Pakistan. Journal of Paleontology, 42:132.Google Scholar
Grant, R. E. 1971. Taxonomy and autecology of two arctic Permian rhynchonellid brachiopods. Smithsonian Contributions to Paleobiology, 3:313335.Google Scholar
Grant, R. E. 1972. The lophophore and feeding mechanism of the productidina (Brachiopoda). Journal of Paleontology, 46:213248.Google Scholar
Grant, R. E. 1975. Methods and conclusions in functional analysis, a reply. Lethaia, 8:3134.Google Scholar
Grant, R. E. 1980. Koskinoid perforations in brachiopod shells: functions and mode of formation. Lethaia, 13:313320.Google Scholar
Grant, R. E. 1981. Living habits of ancient articulate brachiopods, p. 127140. In Broadhead, T. (ed.), Lophophorates; Notes For A Short Course. Univ. of Tennessee, Dept. of Geological Science Studies in Geology 5.Google Scholar
Hallam, A. 1962. Brachiopod life assemblage from the Marlstone rock-bed of Leicestershire. Palaeontology, 4:653659.Google Scholar
Hagdorn, H., and Sandy, M. R. 1998. Color banding in the Triassic terebratulide brachiopod Coenothyris from Muschelkalk of central Europe. Journal of Paleontology, 72:1128.Google Scholar
Harper, E. M. 1991. The role of predation in the evolution of cementation in bivalves. Palaeontology, 34:455460.Google Scholar
Hiller, N. 1995. Devonian chonetacean brachiopods from South America. Annals of the South African Museum, 104:159180.Google Scholar
Hoover, P. R. 1983. The Cooperculum: Anew structure in the phylum Brachiopoda, and its functional significance. Journal of Paleontology, 57:10171029.Google Scholar
Hurst, J. M. 1974. Selective epizoan encrustation of some Silurian brachiopods from Gotland. Palaeontology, 17:423429.Google Scholar
Hurst, J. M. 1975. The function of the brachial valve septa in plectambonitacean brachiopods. Lethaia, 8: 6367.Google Scholar
Jaanusson, V. 1971. Evolution of the brachiopod hinge, p. 3346. In Dutro, J. T. (ed.), Paleozoic Perspectives: A Tribute To G. Arthur Cooper. Smithsonian Contributions to Paleobiology 3.Google Scholar
Jin, J., and Copper, P. 1998. Kulumbella and Microcardinalia (Liastodoca) New Subgenus, Early Silurian divaricate stricklandiid brachiopods from Anticosti Island, Eastern Canada. Journal of Paleontology, 72:441453.Google Scholar
Johnson, M. E. 1979. Evolutionary brachiopod lineages from the Llandovery Series of eastern Iowa. Palaeontology, 22:549567.Google Scholar
Jones, B. 1977. Variation in the Upper Silurian brachiopod Atrypella phoca (Salter) from Somerset and Prince Wales Islands, Arctic Canada. Journal of Paleontology, 51:459479.Google Scholar
Kessling, R. V., Hoare, R. D., and Sparks, D. K. 1980. Epizoans on the Middle Devonian brachiopod Paraspirifer bownockeri: their relationships to one another and to their host. Journal of Paleontology, 54:11411155.Google Scholar
Kowalewski, M., Dulai, A., and Fursich, F. T. 1998. A fossil record full of holes: The Phanerozoic history of drilling predation. Geology 26:10911094.Google Scholar
LaBarbera, M. 1978. Brachiopod orientation to water movement; functional morphology. Lethaia, 11:6780.Google Scholar
LaBarbera, M. 1985. Water patterns in and around three species of articulate brachiopods. Journal of Experimental Marine Biology and Ecology, 55:185206.Google Scholar
Leighton, L. 1998. Constraining functional hypotheses: controls on the morphology of the concavo-convex brachiopod Rafinesquina . Lethaia, 31:269358.Google Scholar
Leighton, L. 1999. Possible latitudinal predation gradient in Middle Paleozoic oceans. Geology, 27:4750.Google Scholar
Leighton, L. 2000. Environmental distribution of spinose brachiopods from the Devonian of New York: test of the soft substrate hypothesis. Palaios, 15:184193.Google Scholar
Leighton, L. 2001. New example of Devonian predatory boreholes and the influence of brachiopod spines on predator success. Palaeogeography, Palaeoclimatology, Palaeoecology, 165:5369.Google Scholar
Leighton, L., and Savarese, M. 1996. Functional and taphonomic implications of Ordovician strophomenide brachiopod valve morphology, p. 161168. In Copper, P. and Jin, J. (eds.), Brachiopods. A. A. Balkema, Rotterdam.Google Scholar
Lenz, A. C. 1986. Morphologic variation in Silurian Dicoelosia diversiforns and Epitomyonia, Arctic Islands, Canada: Caveat Emptor. Biostratigraphie du Paleozoique, 4:121128.Google Scholar
Lescinsky, H. L. 1995. The life orientation of concavo-convex brachiopods; overturning the paradigm. Paleobiology, 21:520551.CrossRefGoogle Scholar
Makurath, J. H., and Anderson, E. J. 1973. Intra- and interspecies variations in gypidulid brachiopods. Evolution, 27:303310.Google Scholar
Mancenido, M. O., and Walley, C. D. 1979. Functional morphology and ontogenetic variation in the Callovian brachiopod Septirhynchia from Tunisa. Palaeontology, 22:317338.Google Scholar
McGhee, G. R. Jr. 2000a. Morphological consequences of mass extinction in brachiopods: a theoretical perspective, p. 435440. In Savazzzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Inc., New York.Google Scholar
McGhee, G. R. Jr. 2000b. Stability strategies and ordinal shell form variations in brachiopods: a theoretical perspective, p. 421428. In Savazzzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Inc., New York.Google Scholar
McGhee, G. R. Jr. 2000c The theoretical enigma of non-biconvex brachiopod shell form, p. 429434. In Savazzzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Inc., New York.Google Scholar
McGhee, G. R. Jr. 2000d. The optimum biconvex brachiopod in the theoretical spectrum of shell form, p. 415420. In Savazzzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Inc., New York.Google Scholar
Menard, H. W., and Boucot, A. J. 1951. Experiments on the movement of shells by water. American Journal of Science, 249:131151.Google Scholar
Michalik, J. 1995. Functional morphology - Paleoecology of pygopid brachiopods from the western Carpathian Mesozoic, p. 175178. In Copper, P. and Jin, J. (eds.), Brachiopods. A. A. Balkema, Rotterdam.Google Scholar
Muir-Wood, H., and Cooper, G. A. 1960. Morphology, classification, and life habits of the Productoidea (Brachiopoda). Geological Society of America, Memoir, 81:1447.Google Scholar
Peck, L. S. 1992. Body volumes and internal space constraints in articulate brachiopods. Lethaia, 25:383390.Google Scholar
Peck, L. S., Clarke, A., and Holmes, L. J. 1987. Size, shape, and the distribution of organic matter in the Recent Antarctic brachiopod Liothyrella uva . Lethaia, 20:3340.Google Scholar
Peck, L. S., Morris, D. J., and Clarke, A. 1986. The caeca of punctate brachiopods:a respiring tissue not a respiratory organ. Lethaia, 19:232.CrossRefGoogle Scholar
Racheboeuf, P. R. 1981. Chonetaces (Bracyhiopodes) siluriens et devoniens du Sud Ouest d l'Europe. Memoires de la Societe geologie et mineralogique de Bretagne, 27:1294.Google Scholar
Racheboeuf, P. R., and Copper, P. 1990. The mesoplophe, a new lophophore type for chonetaceans brachiopods. Lethaia, 23:341346.Google Scholar
Racheboeuf, P. R., and Garcia, J. P. 1996. Spine asymmetry in chonetoidean brachiopods: examples of reiterated heterochronies linked to intra-Devonian events. Palaeogeography, Palaeoclimatology, Palaeoecology, 123:323342.Google Scholar
Racheboeuf, P. R., and Herrera, Z. A. 1998. Geometric shell and mode of life of Devonian chonetoidean brachiopod. Lethaia, 31:125136.Google Scholar
Richardson, J. R. 1981. Brachiopods and pedicles. Paleobiology, 7:8795.CrossRefGoogle Scholar
Rickwood, A. E. 1977. Age, growth, and shape of the intertidal brachiopod Waltonia inconspicua Sowerby from New Zealand. American Zoologist, 17:6367.Google Scholar
Rodriguez, S. M., and Alexander, R. R. 1996. Hydrodynamic stability of empty shells of extant terebratulides and rhynchonellides: implications for life habit of extinct biconvex taxa, p. 221226. In Copper, P. and Jin, J. (eds.), Brachiopods. A. A. Balkema, Rotterdam.Google Scholar
Rudwick, M. J. S. 1960. The feeding mechanism of spire-bearing fossil brachiopods. Geological Magazine, 96:124.Google Scholar
Rudwick, M. J. S. 1962. Filter-feeding mechanisms in some brachiopods from New Zealand. Journal of the Linnean Society (Zoology), 44:592615.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. Hutchinson & Co., Ltd., London.Google Scholar
Savarese, M. 1994. Taphonomic and paleoecologic implications of flow-induced forces on concavo-convex geniculate brachiopods: an experimental approach. Lethaia, 27:301312.Google Scholar
Savazzi, E. 1999. Introduction to functional morphology, p. 315. In Savazzzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Inc., New York.Google Scholar
Schumann, D. 1991. Hydrodynamic influences in brachiopod shell morphology of Terebratalia transversa (Sowerby) from the San Juan Island, USA, p. 265272. In MacKinnon, D. I., Lee, D., and Campbell, J. D. (eds.), Brachiopods Through Time. A. A. Balkema, Rotterdam.Google Scholar
Schumann, D. 1995. Uncinulid ecology and distribution in the Devonian of the Cantabrian Mountains (northern Spain), p. 69. In Copper, P. and Jin, J. (eds.), Abtracts, 3rd International Brachiopod Congress. Laurentian University, Sudbury, Canada.Google Scholar
Sheehan, P. M. 1978. The hinging mechanisms of brachiopods—taphonomic considerations. Journal of Paleontology, 52:748.Google Scholar
Shiells, K. A. G. 1968. Kochiproductus coronus sp. nov. from the Scottish Visean and a possible mechanical advantage of its flange structure. Transactions of The Royal Society of Edinburgh, 67:477510.CrossRefGoogle Scholar
Shumway, S. E. 1982. Oxygen consumption in brachiopods and the possible role of punctae. Journal of Experimental Marine Biology and Ecology, 58:207220.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The Mid-Paleozoic precursor to the Mesozoic Marine revolution. Paleobiology, 10:229245.Google Scholar
Spencer, R. S. 1978. Paleoecologic response and cyclothemic phase of Chonetinella flemingi and C. alata from the Pennsylvanian of Kansas. Journal of Paleontology, 52:13561375.Google Scholar
Stanley, S. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology, 20:869900.Google Scholar
Surlyk, F. 1972. Morphologic adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous). Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 19:2.Google Scholar
Thayer, C. W. 1975a. Strength of pedicle attachment in articulate brachiopods: Ecologic and paleoecologic significance. Paleobiology, 1:388399.Google Scholar
Thayer, C. W. 1975b. Morphologic adaptations of benthic invertebrates to soft substrates. Journal of Marine Research, 33:117189.Google Scholar
Thayer, C. W. 1977. Recruitment, growth, and mortality of a living brachiopod, with implications for the interpretation of survivorship curves. Paleobiology, 3:98109.Google Scholar
Thayer, C. W. 1981. Ecology of living brachiopods, p. 110126. In Broadhead, T. (ed.), Lophophorates; Notes for a Short Course. Univ. of Tennessee, Dept. of Geological Science Studies in Geology 5.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos, p. 479625. In Tevesz, M. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Topics in Geobiology 3. Plenum Press, New York.Google Scholar
Thayer, C. W. 1986a. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology, 12:161174.Google Scholar
Thayer, C. W. 1986b. Respiration and the function of brachiopod punctae. Lethaia, 19:2332.Google Scholar
Thayer, C. W. 1991. Articulate fecundity in the Phanerozoic: steady state or what?, p. 182190. In MacKinnon, D. I., Lee, D., and Campbell, J. D. (eds.), Brachiopods Through Time. A. A. Balkema, Rotterdam.Google Scholar
Titus, R. 1992. Clinal variation, heterochrony, and facies in the Trentonian Sowerbyella lineage (Ordovician, New York State). Journal of Paleontology, 66:758771.CrossRefGoogle Scholar
Vogel, K. 1966. Eine funktionsmorphologische Studie an der Brachiopoden gattung Pygope (Malm bis Unterkreide). Neues Jahrbuch Geologie und Palaeontologie Abhandlung, 125:423442.Google Scholar
Vogel, K. 1975. Das filter-feeding System bei Spirferida. Lethaia, 8:231240.Google Scholar
Wallace, P., and Ager, D. V. 1966. Demonstration: flume experiments to test the hydrodynamic properties of certain spiriferid brachiopods with reference to their supposed life orientation and mode of feeding. Proceedings of the Geological Society of London, 1635:160163.Google Scholar
Watkins, R. 1975. Silurian brachiopods in a stromatoporoid bioherm. Lethaia, 8:5361.Google Scholar
Westbroek, P., Yanagida, J., and Isa, Y. 1980. Functional morphology of brachiopod and coral skeletal structures supporting ciliated epithelia. Paleobiology, 6:313340.Google Scholar
Westbroek, P., Neijndorff, F., and Stel, J. H. 1975. Ecology and functional morphology of an uncinulid brachiopod from the Devonian of Spain. Palaeontology, 18:367376.Google Scholar
Williams, A. 1960. Feeding mechanisms of spire-bearing brachiopods. Geological Magazine, 97:514516.CrossRefGoogle Scholar
Williams, A., and Rowell, A. J. 1965. Morphology, p. H57H138. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, part H, Brachiopoda, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A., and Hurst, J. M. 1978. Brachiopod Evolution, p. 79122. In Hallam, A. (ed.), Patterns of evolution as illustrated by the fossil record. Developments in Paleontology and Stratigraphy 5. Elsevier, Amsterdam.Google Scholar
Wright, A. D., and Nolvak, J. 1997. Functional significance of the spines of Ordovician Ungulate brachiopod Acanthambonia . Palaeontology, 40:113119.Google Scholar
Wulff, J. 1991. Intraspecific morphologic variability in Spirifer pellaensis, Greenbrier Group (Upper Mississippian/Lower Carboniferous), USA, p. 4958. In MacKinnon, D. I., Lee, D., and Campbell, J. D. (eds.), Brachiopods Through Time. A. A. Balkema, Rotterdam.Google Scholar
Ziegler, A. M., Boucot, A. J., and Sheldon, R. P. 1966. Silurian pentameroid brachiopods preserved in position of growth. Journal of Paleontology, 40:10321036.Google Scholar