Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T06:50:21.088Z Has data issue: false hasContentIssue false

The key role of skeletal microstructure in recognizing high-rank scleractinian taxa in the stratigraphical record

Published online by Cambridge University Press:  21 July 2017

Ewa Roniewicz*
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Al. Żwirki i Wigury 93, 02 594 Warsaw, Poland
Get access

Abstract

Skeleton microstructure of Recent scleractinians proves to be a valuable suprageneric taxonomical criterion, and the same has been stated with respect to Mesezoic corals where skeletonal preservation is aragonite. In paleontological practice, septal microstructure is decisive in discrimination of taxa among homeomorphic genera of different families. Similarities of microstructural features of some Recent and fossil corals encompass the genera in common taxa of higher ranks and allow for reconstruction of their presumed phylogeny.

Type
Research Article
Copyright
Copyright © 1996 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloiteau, J. 1952. Madréporaires post-paléozoïques, p. 539684. In Piveteau, J. (ed.), Traité de Paléontologie, Masson et Cie, Paris.Google Scholar
Alloiteau, J. 1957. Contribution a la Systématique des Madréporaires Fossiles, Paris, 462 p.Google Scholar
Barnes, D. J. 1970. Coral skeletons: an explanation of their growth and structure. Science, 170:13051308.Google Scholar
Beauvais, L. 1986. Monographie des Madréporaires du Jurassique inférieur du Maroc. Palaeontographica, A, 194, 68 p.Google Scholar
Beauvais, M. 1982. Révision systématique des Madréporaires des Couches des Gosau (Crétacé supérieur, Autruche). Travaux de Laboratoire de Paléontologie des Invertébrés, Université Pierre et Marie Curie, 1: 256 p., 2: 276 p., 3: 177 p., 4.Google Scholar
Bryan, W. H., and Hill, D. 1941. Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. Proceedings of the Royal Society of Queensland, 52:7891.Google Scholar
Chevalier, J. P. 1962. Recherches sur les Madréporaires et les formations récifales miocènes de la Mediterraneé occidentale. Mémoires de la Société géologique de France, Nouvelle Série, 40 (1961), 562 p.Google Scholar
Chevalier, J. P. 1971. Les Scléractiniaires de la Mélanesie Francaise, Ire partie. Expedition Francaise sur les récifs coralliens de la Nouvelle Calédonie, 5, 307 p.Google Scholar
Chevalier, J. P. 1975. Les Scléractiniaires de la Mélanesie Francaise, IIe partie. Expedition Francaise sur les récifs coralliens de la Nouvelle Calédonie, 7, 407 p.Google Scholar
Chevalier, J. P. 1987. Ordre des Scléractiniaires, p. 403764. In Grassé, P. P. (ed.), Traité de Zoologie, Cnidaires, Anthozoaires, 3. Masson, Paris.Google Scholar
Constanz, B. R. 1984. Functional comparison of the microarchitecture of Acropora palmata and Acropora cervicornis. Palaeontographica Americana, 54:548552.Google Scholar
Cuif, J. P. 1972. Note sur des Madréporaires triasiques à fibres aragonitiques conservées. Comptes rendus hebdomadaires des séances de l'Academie des Sciences, D, 274:12721275.Google Scholar
Cuif, J. P. 1973. Recherches sur les Madréporaires du Trias. I. Famille Stylophyllidae. Bulletin du Muséum d'Histoire Naturelle, 3e série, 97, Sciences de la Terre, 17:211291.Google Scholar
Cuif, J. P. 1975a. Recherches sur les Madréporaires du Trias. II. Astraeoidea. Révision des genres Montlivaltia et Thecosmilia. Etude de quelques types structuraux du Trias de Turquie. Bulletin du Muséum d'Histoire Naturelle, 3e série, 275, Sciences de la Terre, 40:293400.Google Scholar
Cuif, J. P. 1975b. Recherches sur les Madréporaires du Trias. III. Etude des structures pennulaires chez les Madréporaires triasiques. Bulletin du Muséum d'Histoire Naturelle, 3e série, 310, Sciences de la Terre, 44:45127.Google Scholar
Cuif, J. P. 1975c. Caractères morphologiques, microstructuraux et systématiques des Pachythecalidae, nouvelle famille de Madréporaires triasiques. Géobios, 8, 3:157180.Google Scholar
Cuif, J. P. 1976. Recherches sur les Madréporaires du Trias. IV. Formes cério-méandroides et thamnastérioides du Trias des Alpes et du Taurus sud-anatolien. Bulletin du Muséum d'Histoire Naturelle, 3e série, 381. Sciences de la Terre, 53:68194.Google Scholar
Cuif, J. P. 1977. Arguments pour une relation phylétique entre les Madréporaires paléozoïques et ceux du Trias Implications systématiques et l'analyse microstructurale des Madréporaires triasiques. Mémoires de la Société géologique de France, Nouvelle Série, 56, 129, 54 p.Google Scholar
Cuif, J. P., and Gautret, P. 1993a. Evolution des Scléractiniaires: diversité des architectures poreuses au Trias supérieur. Géobios, 26:405412.Google Scholar
Cuif, J. P., and Gautret, P. 1993b. Microstructural features of fibrous tissues in the skeletons of some chaetetid sponges. Courier Forschungsinstitut Senckenberg, 164:309315.Google Scholar
Eliánová, H. 1974. Hexacorallia et Octocorallia du Paléogène des Carpathes externes. Sbornik geologickych ved, Paleontologie, 16:105156.Google Scholar
Felix, J. 1903. Studien Über die korallenführenden Schichten der oberen Kreideformation in den Alpen und den Mediterrangebieten. Die Anthozoen der Gosauchichten in den Ostalpen. Palaeontographica, 49:163363.Google Scholar
Gill, G. A. 1967. Quelques precisions sur les septes perforés des Polypiers mésozoique. Mémoires de la Société géologique de France, Nouvelle Série, 46, 106:5881.Google Scholar
Gill, G. A. 1968. Sur les pennules de Microsolénidés (Coraux), Etude complémentaire. Rivista Italiana di Paleontologia, 74:969982.Google Scholar
Gill, G. A. 1970. La structure et la microstructure septale de Montlivaltia Lmx.: criteres nouveaux pour la systématique des Hexacoralliaires. Comptes rendus hebdomadaires des séances de l'Academie des Sciences, D, 274:24592463.Google Scholar
Gill, G. A. 1977. Essay de regroupement des Stylines (Hexacoralliaires) d'après la morphologie des bords internes de leurs septes. Mémoires du Boureau de Recherches Géologiques et Minieres, 89:283295.Google Scholar
Gill, G. A. 1981. The fulturae (compound sunapticulae), their structure and reconsideration of their systematic value. Acta Paleontologica Polonica, 25:301310.Google Scholar
Gill, G. A. 1993. Free pennulae within Dendraraea sp. (scleractinian coral) from the Callovian of southern Israel. Courier Forschungsinstitut Senckenberg, 164: 199204.Google Scholar
Gill, G. A., and Lafuste, J. G. 1971. Madréporaires simples du Dogger d'Afghanistan: étude sur les structures de type “Montlivaltia”. Mémoires de la Société géologique de France, Nouvelle Série, 50, 115, 40 p.Google Scholar
Gill, G. A., and Lafuste, J. G. 1987. Structure, repartition et signification paleogéographique d'Aspidiscus, hexacoralliaire cenomanien de la Tethys. Bulletin de la Société géologique de France, 8e série, 3:921934.Google Scholar
Gill, G. A., and Russo, A. 1973. Présence d'une structure septale de type “Montlivaltide” chez Trochosmilia, Madréporaires éocénes. Annales de Paléontologie, Invertébrés, 59, 27 p.Google Scholar
Gill, G. A., and Russo, A. 1980. Recognition of pennular structures typical of Mesozoic corals in Discotrochus orbignyanus from the Eocene of the Gulf States. Journal of Paleontology, 54:11081112.Google Scholar
Gladfelter, E. H. 1982. Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs, 1:4551.Google Scholar
Isa, Y. 1986. An electron microscope study on the mineralization of the skeleton of the staghorn coral Acropora hebes. Marine Biology, 93:91101.Google Scholar
Jell, J. S. 1969. Septal microstructure and classification of the Phillipsastreidae, p. 5073. In Campbell, K. S. W. (ed.), Stratigraphy and Palaeontology. Essays in Honour of Dorothy Hill. Australian National University Press, Canberra.Google Scholar
Jell, J. S. 1974. The microstructure of some scleractinian corals. Proceedings of the 2nd International Coral Reef Symposium, Brisbane, 2:301320.Google Scholar
Kinchington, D. 1980. Localization of intracellular calcium within the epidermis of a cool temperate coral, p. 143149. In Tardent, P. and Tardent, R. (eds.), Developmental and Cellular Biology of Coelenterates. Elsevier, North Holland Biomedical Press, Amsterdam.Google Scholar
Koby, F. 1889. Monographie des polypiers jurassiques de la Suisse. Mémoires de la Société Paléontologique de la Suisse 16:457582.Google Scholar
Kolodziej, B. 1995. Microstructure and taxonomy of Amphiastraeina (Scleractinia). Annales Societatis Geologorum Poloniae, 65, 17 p.Google Scholar
Lathuiligre, B., and Gill, G. A. 1995. Some new suggestions on functional morphology in pennular corals, p. 259264. In Lathuilière, B. and Geister, J. (eds.), Coral Reefs in the Past, Present and Future, September 6 to 9 1994. Publications du Service Géologique du Luxembourg, 29.Google Scholar
Le Tissier, M. D'. A. A. 1988. Patterns of formation and the ultrastructure of the larval skeleton of Pocillopora damicornis. Marine Biology, 98:493501.Google Scholar
Melnikova, G. K. 1975. Pozdnetriasovye skleraktinii yugo-vostochnogo Pamira. 234 p. Izdatelstvo Donish, Dushanbe (in Russian).Google Scholar
Melnikova, G. K. 1984a. Novye pozdnetriasovye korally otriada Archaeocoeniida Alloiteau, 1952 yugo-vostochnogo Pamira. Izdatelstvo Donish, Dushanbe:4255.Google Scholar
Melnikova, G. K. 1984b. Novye pozdnetriasovye korally podotriada Protoheterastraeina Melnikova, subord. nov. yugo-vostochnogo Pamira. Izdatelstvo Donish, Dushanbe:5674.Google Scholar
Milne Edwards, H., and Haime, J. 1848. Recherches sur les polypiers. Observations sur la structure et le developement des polypiers en général. Annales des Sciences Naturelles, 3e série, 9:3789.Google Scholar
Milne Edwards, H., and Haime, J. 1857–1860. Histoire Naturelle des Coralliaires ou Polypes Proprement Dits, Paris, 1: 326 p.; 2, 633 p.; 3, 560, p. Google Scholar
Montanaro-Gallitelli, E. 1974a. Micro structure and septal arrangement in a primitive Triassic coral. Bolletino della Societa Paleontologica Italiana, 12:822.Google Scholar
Montanaro-Gallitelli, E. 1974b. Morphogenesis and skeletal structure of some primitive Triassic corals: problems of phylogeny, p. 220224. In Sokolov, B. S. (ed.), Ancient Cnidaria. Transactions of the Institute of Geology and Geophysics, Academy of Science of the USSR, Siberian Branch, 202.Google Scholar
Montanaro-Gallitelli, E. 1975. Hexantiniaria, a new order of Zoantharia (Anthozoa, Coelenterata). Bolletino della Societa Paleontologica Italiana, 14 (preprint):2125.Google Scholar
Montanaro-Gallitelli, E., Morandi, N., and Pirani, R. 1974. Corallofauna aragonitica ad alto contenuato in stronzio: studio analitico e considerazioni. Bolletino della Societa Paleontologica Italiana, 12, 2 (1973):130144.Google Scholar
Mori, K. and Minoura, K. 1980. Ontogeny of ‘epithecal’ and septal structures in scleractinian corals. Lethaia, 13:321–216.CrossRefGoogle Scholar
Morycowa, E. 1964. Hexacorallia des couches de Grodziszcze (Néocomien, Carpathes). Acta Paleontologica Polonica, 9, 112 p.Google Scholar
Morycowa, E. 1971. Hexacorallia et Octocorallia du Crétacé inférieur de Rarau (Carpathes Orientales roumanes). Acta Paleontologica Polonica, 16, 149 p:Google Scholar
Morycowa, E., and Roniewicz, E. 1995a. Scleractinian septal microstructures; taxonomical aspect, p. 269. In Lathuilière, B. and Geister, J. (eds.), Coral Reefs in the Past, Present and Future, September 6 to 9 1994. Publications du Service Géologique du Luxembourg, 29.Google Scholar
Morycowa, E., and Roniewicz, E. 1995b. Microstructural disparity beteen Recent fungiine and Mesozoic microsolenine scleractinians. Acta Palaeontologica Polonica, 40:361385.Google Scholar
Ogilvie, M. 1897. Microscopic and systematic study of madreporarian types of corals. Philosophical Transactions of the Royal Society B, 187:83345.Google Scholar
Pratz, E. 1882. Über die verwandtschazftlichen Beziehungen einiger Korallengattungen mit hauptsächlicher Berücksichtigung ihrer Septalstructur. Palaeontographica, 29:81122.Google Scholar
Rittel, J. F., and Stanley, G. D. Jr. 1993. Enhanced skeletal details and diagenetic processes of Triassic corals revealed by cathodoluminescence. Courier Forschungsinstitut Senckenberg, 164:339346.Google Scholar
Romano, S. L. and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.Google Scholar
Roniewicz, E. 1970a. Kobyastraea n.gen., genre homéomorphique de Thamnasteria Lesauvage, 1823 (Hexacoralla). Acta Palaeontologica Polonica, 15:137151.Google Scholar
Roniewicz, E. 1970b. Scleractinia from the Upper Portlandian of Tisbury, Wiltshire, England. Acta Palaeontologica Polonica, 15:519532.Google Scholar
Roniewicz, E. 1976. Les Scléractiniaires du Jurassique supérieur de la Dobrogea Centrale (Roumanie). Palaeontologia Polonica, 34:23121.Google Scholar
Roniewicz, E. 1983. Pennular and non-pennular Jurassic scleractinians - some examples. Acta Palaeontologica Polonica, 27:157193.Google Scholar
Roniewicz, E. 1984a. Aragonitic Jurassic corals from erratic boulders on the South Baltic coast. Annales Societatis Geologorum Poloniae, 54:6577.Google Scholar
Roniewicz, E. 1984b. Microstructural evidence of the distichophylliid affinity of the Caryophylliina (Scleractinia). Palaeontographica Americana, 54:515518.Google Scholar
Roniewicz, E. 1989. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Denkschriften der Osterreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, 126, 152 p.Google Scholar
Roniewicz, E., and Morycowa, E. 1989. Triassic Scleractinia and the Triassic/Liassic boundary. Memoirs of the Association of Australasian Palaeontologists, 8:347354.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Russo, A. 1974. Il genre Cyclolitopsis Reuss (Coralla eocenico): struttura settale e sua posizione systematica. Bolletino della Societa Paleontologica Italiana, 13:316.Google Scholar
Russo, A. 1976. Microstructure septale de quelques genres de Madréporaires éocènes. Bolletino della Societa Paleontologica Italiana, 15:7384.Google Scholar
Scherer, M. 1977. Preservation, alteration and multiple cementation of aragonitic skeletons from the Cassian Beds (U. Triassic, S Alps): petrographic and geochemical evidence. Neues Jahrbuch der Geologie und Palaeontologie, 154:213262.Google Scholar
Sorauf, J. E. 1972. Skeletal micro structure and microarchitecture in Scleractinia (Coelenterata). Palaeontology, 15:88101.Google Scholar
Sorauf, J. E. 1993. The coral skeleton: analogy and comparisons, Scleractinia, Rugosa and Tabulata. Courier Forschungsinstitut Senckenberg, 164:6370.Google Scholar
Stanley, G. D. Jr., and Swart, P. K. 1995. Evolution of the coral zooxanthellate symbiosis during the Triassic: a geochemical approach. Paleobiology, 21:179199.Google Scholar
Stolarski, J. 1995. Ontogenetic development of the thecal structures in caryophylliine scleractinian corals. Acta Paleontologica Polonica, 40:1944.Google Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Paper, 44, 363 p.Google Scholar
Wainwright, S. A. 1963. Skeletal organisation in the coral Pocillopora damicornis. Quarterly Journal of Microscopical Sciences. 104:169183.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328F444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Wells, J. W. 1969. The formation of dissepiments in zoantharian corals, p. 1726. In Campbell, K. S. (ed.), Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill. Australian National University Press, Canberra.Google Scholar
Wise, S. W. 1970. Scleractinian coral exoskeleton: surface microarchitecture and attachment scars pattern. Science, 169:978980.Google Scholar