Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T19:43:23.574Z Has data issue: false hasContentIssue false

Living Comatulids

Published online by Cambridge University Press:  21 July 2017

Charles G. Messing*
Affiliation:
Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive Dania, Florida 33004, USA
Get access

Abstract

Comatulid crinoids, or featherstars, are the dominant group of living crinoids and occur in a wide range of modern marine environments from the intertidal zone to the abyss. This chapter outlines current understanding of comatulid classification, distribution, feeding ecology, diets, predation, and taphonomy. A detailed introduction to morphological features, terms and associated symbology is given together with a discussion of practical aspects of working with specimens and the difficulties associated with species identifications. An artificial key to the families of comatulids is included.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54:273288.Google Scholar
Bakus, G. J. 1981. Chemical defense mechanisms on the Great Barrier Reef, Australia. Science, 211:497499.Google Scholar
Baumiller, T. K. 1997. Crinoid functional morphology, p. 4568. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Breimer, A. 1978. Recent crinoids, p. 958. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Byrne, M., and Fontaine, A. R. 1981. The feeding behavior of Florometra serratissima (Echinodermata: Crinoidea). Canadian Journal of Zoology, 59(1):1118.Google Scholar
Chen, J.-C., Chang, K.-H., and Chen, C.-P. 1988. Shallow water crinoids of Renting National Park, Taiwan. Bulletin of the Institute of Zoology, Academia Sinica, 27(2):7390.Google Scholar
Clark, A. H. 1909. New genera and higher groups of unstalked crinoids. Proceedings of the Biological Society of Washington, 22:173178.Google Scholar
Clark, A. H. 1931. A monograph of the existing crinoids, 1(3). Bulletin of the United States National Museum, 82:1816.Google Scholar
Clark, A. H. 1941. A monograph of the existing crinoids, 1(4a). Bulletin of the United States National Museum, 82:1603.Google Scholar
Clark, A. H. 1947. A monograph of the existing crinoids, 1(4b). Bulletin of the United States National Museum, 82:1473.Google Scholar
Clark, A. H. 1950. A monograph of the existing crinoids, 1(4c). Bulletin of the United States National Museum, 82:1383.Google Scholar
Clark, A. H., and Clark, A. M. 1967. A monograph of the existing crinoids, 1(5). Bulletin of the United States National Museum, 82:1860.Google Scholar
Clark, A. M. 1970. Echinodermata Crinoidea. Marine Invertebrates of Scandinavia, no. 3. Universitetsforlaget, Oslo. 55 p.Google Scholar
Clark, A. M., and Rowe, F. W. E. 1971. Monograph of shallow-water Indo-west Pacific Echinoderms. British Museum, London. 238 p.Google Scholar
Colin, P. L. 1974. Observation and collection of deep reef fishes off the coasts of Jamaica and British Honduras (Belize). Marine Biology, 24:2938.CrossRefGoogle Scholar
Conan, G., Roux, M., and Sibuet, M. 1981. A photographic survey of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep-Sea Research, 28A:441453.Google Scholar
Dearborn, J. H., and Rommel, J. A. 1969. Crinoidea—Distribution of selected groups of marine invertebrates in waters south of 35°S Latitude, folio 11, Antarctic Map Folio Series, American Geographic Society.Google Scholar
Echols, C. S., and Lewis, R. D. 1995. Epibionts and their effects on the taphonomy of Recent crinoid ossicles: In situ experiments at San Salvador, Bahamas. Geological Society of America Abstracts with Programs, 27(6):A136.Google Scholar
Fell, H. B. 1966. Ecology of crinoids, p. 4962. In Boolootian, R. A. (ed.), Physiology of Echinodermata. Wiley-Interscience, New York.Google Scholar
Gislén, T. 1924. Echinoderm Studies. Zoologiska Bidrag från Uppsala, 9:1316.Google Scholar
Holland, N. D. 1969. An electron microscope study of the papillae of crinoid tube feet. Pubblicazione Stazione Zoologica di Napoli, 37:575580.Google Scholar
Holland, N. D., Leonard, A. B., and Meyer, D. L. 1991. Digestive mechanics and gluttonous feeding in the feather star Oligometra serripinna (Echinodermata: Crinoidea). Marine Biology, 111:113119.Google Scholar
Holland, N. D., Strickler, J. R., and Leonard, A. B. 1986. Particle interception, transport and rejection by the feather star Oligometra serripinna (Echinodermata: Crinoidea), studied by frame analysis of videotapes. Marine Biology, 93:111126.Google Scholar
Holterhoff, P. F. 1997. Paleocommunity and evolutionary ecology of Paleozoic crinoids, p. 69106. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Hyman, L. H. 1955. The Invertebrates, Vol. 4: Echinodermata. McGraw-Hill, New York, 763 p.Google Scholar
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology, 59:551560.Google Scholar
Kammer, T. W., and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology, 13(4):379395.Google Scholar
Lahaye, M. C., and Jangoux, M. 1985. Functional morphology of the podia and ambulacral grooves of the comatulid crinoid Antedon bifida (Echinodermata). Marine Biology, 86:307318.Google Scholar
La Touche, R. W. 1978. The feeding behaviour of the featherstar Antedon bifida (Echinodermata: Crinoidea). Journal of the Marine Biological Association of the United Kingdom, 58:877890.Google Scholar
La Touche, R. W., and West, A. B. 1980. Observations on the food of Antedon bifida (Echinodermata: Crinoidea). Marine Biology, 60:3946.CrossRefGoogle Scholar
Lawrence, J. 1987. A Functional Biology of Echinoderms. Johns Hopkins Press, Baltimore, 340 p.Google Scholar
Leonard, A. B. 1989. Functional response in Antedon mediterranea (Lamarck) (Echinodermata: Crinoidea): the interaction of prey concentration and current velocity on a passive suspension-feeder. Journal of Experimental Marine Biology and Ecology, 127:81103.CrossRefGoogle Scholar
Leonard, A. B., Strickler, J. R., and Holland, N. D. 1988. Effects of current speed on filtration during suspension feeding in Oligometra serripinna (Echinodermata: Crinoidea). Marine Biology, 97:111125.Google Scholar
Lewis, R. D. 1997. Degradation and transport of modern crinoid ossicles, San Salvador, Bahamas: How good is the analog? Geological Society of America Abstracts with Programs, 29(3):31.Google Scholar
Lewis, R. D., Chambers, C. R., and Peebles, M. W. 1990. Grain morphologies and surface textures of Recent and Pleistocene crinoid ossicles, San Salvador, Bahamas. Palaios, 5:570579.Google Scholar
Lewis, R. D., and Echols, C. M. H. M. S. 1994. Attachment studies on plastic panels and calcium-carbonate skeletal substrata in Fernandez Bay, San Salvador Island, Bahamas. Proceedings of the 26th Meeting of the Association of Marine Laboratories of the Caribbean, June 11–16, 1994: Bahamian Field Station, Ltd., p. 126146.Google Scholar
Lewis, R. D., and Peebles, M. W. 1988. Surface textures of Nemaster rubiginosa (Crinoidea: Echinodermata) San Salvador, Bahamas, p. 203207. In Mylroie, J. (ed.), Proceedings of the Fourth Symposium on the Geology of the Bahamas. Bahamas Field Station, San Salvador, Bahamas.Google Scholar
Liddell, W. D. 1982. Suspension feeding by Caribbean comatulid crinoids, p. 3339. In Lawrence, J. M. (ed.), International Echinoderms Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Llewellyn, G., and Messing, C. G. 1993. Compositional and taphonomic variations in modern crinoid-rich sediments from the deep-water margin of a carbonate bank. Palaios, 8:554573.Google Scholar
Macurda, D. B. Jr. 1973. Ecology of comatulid crinoids at Grand Bahama Island. Hydro-Lab Journal, 2:924.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1974. Feeding posture of modern stalked crinoids. Nature, 247:394396.CrossRefGoogle Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1983. Sea lilies and feather stars. American Scientist, 71:354365.Google Scholar
Magnus, D. B. E. 1963. Der federstern Heterometra savignyi im Roten Meer. Natur Museum, Frankfurt, 93:355368.Google Scholar
Manten, A. A. 1971. Silurian reefs of Gotland. Developments in Sedimentology, 13. Elsevier, Amsterdam, 539 p.Google Scholar
McConnaughey, B. H., and Zottoli, R. 1983. Introduction to Marine Biology. Mosby, St. Louis, 638 p.Google Scholar
McKenzie, J. D. 1992. Comparative morphology of crinoid tube feet, p. 7379. In Scalera-Liaci, L. and Canicatti, C. (eds.), Echinoderm Research 1991. A. A. Balkema, Rotterdam.Google Scholar
Messing, C. G. 1984. Brooding and paedomorphosis in the deep-water feather star Comatilia iridometriformis (Echinodermata: Crinoidea). Marine Biology, 80:8391.Google Scholar
Messing, C. G. 1985. Submersible observations of deep-water crinoid assemblages in the tropical western Atlantic Ocean, p. 185193. In Keegan, B. F. and O'Connor, B. D. S. (eds.), Proceedings of the fifth International Echinoderm Conference, Galway. A. A. Balkema, Rotterdam.Google Scholar
Messing, C. G. 1994. Comatulid crinoids (Echinodermata) of Madang, Papua New Guinea and environs: diversity and ecology, p. 237243. In David, B., Guille, A., Féral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Messing, C. G. 1995. Redescription of a unique feather star (Echinodermata: Crinoidea: Comasteridae) with the diagnosis of a new genus. Proceedings of the Biological Society of Washington, 108(4):656661.Google Scholar
Messing, C. G. in press a. An initial re-assessment of the distribution and richness of the East Indian shallow-water crinoid fauna. In Mooi, R. and Telford, M. (eds.), Proceedings of the Ninth International Echinoderm Conference, San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Messing, C. G. in press b. A revision of the Recent Indo-West Pacific comatulid genus Comaster Agassiz. Part 1: The type species of Comaster and Phanogenia Lovén (Echinodermata: Crinoidea: Comasteridae). Invertebrate Taxonomy.Google Scholar
Messing, C. G., and Dearborn, J. H. 1990. Marine Flora and Fauna of the Northeastern United States, Echinodermata: Crinoidea. NOAA Technical Report NMFS 91.Google Scholar
Messing, C. G., and Rankin, D. 1995. Local variations in skeletal contribution to sediment by a modern stalked crinoid (Chladocrinus decorus) (Echinodermata) relative to distribution of a living population. Geological Society of America Abstracts with Programs, 27(6):A136.Google Scholar
Meyer, D. L. 1972. Ctenantedon, a new antedonid crinoid convergent with comasterids. Bulletin of Marine Science, 22(1):5366.Google Scholar
Meyer, D. L. 1973. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology, 22:105129.Google Scholar
Meyer, D. L. 1979. Length and spacing of the tube feet in crinoids (Echinodermata) and their role in suspension-feeding. Marine Biology, 51:361369.Google Scholar
Meyer, D. L. 1982a. Food and feeding mechanisms: Crinozoa, p. 2542. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L. 1982b. Food composition and feeding behavior of sympatric species of comatulid crinoids from the Palau Islands (Western Pacific), p. 4349. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 11(2):154164.Google Scholar
Meyer, D. L. 1986. Les Crinoïdes, p. 199225. In Guille, A., Laboute, P., and Menou, J.-L., (eds.), Guide des étoiles de mer, oursins, et autres échinodermes du lagon de Nouvelle-Calédonie. Éditions de l'ORSTOM. Collection Faune Tropicale, 25, Paris.Google Scholar
Meyer, D. L. 1988. Crinoids as renewable resources: Rapid regeneration of the visceral mass in a tropical reef-dwelling crinoid from Australia, p. 519522. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L. 1997. Implications of research on living stalked crinoids for paleobiology, p. 3143. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Meyer, D. L., and Ausich, W. I. 1983. Biotic interactions among Recent and among fossil crinoids, p. 377427. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, NY.Google Scholar
Meyer, D. L., Lahaye, C. A., Holland, N. D., Arneson, A. C., and Strickler, J. R. 1984a. Time-lapse cinematography of feather stars (Echinodermata: Crinoidea) on the Great Barrier Reef, Australia: demonstrations of posture changes, locomotion, spawning and possible predation by fish. Marine Biology, 78:179184.Google Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.Google Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1980. Ecology and distribution of shallow-water crinoids of Palau and Guam. Micronesica, 16(1):5999.Google Scholar
Meyer, D. L., Messing, C. G., and Macurda, D. B. Jr. 1978. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata). Bulletin of Marine Science, 28:412441.Google Scholar
Meyer, D. L., Meyer, K. B., and Messing, C. G. 1984b. Biostratinomy of Recent crinoids in coral reef and carbonate bank margin environments. Geological Society of America Abstracts with Programs, 16(3):180.Google Scholar
Meyer, D. L., Meyer, K. B., and Messing, C. G. 1986. Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. Palaios, 1:294302.Google Scholar
Meyer, D. L., and Oji, T. 1993. Eocene crinoids from Seymour Island, Antarctic Peninsula: paleogeographic and paleoecologic implications. Journal of Paleontology, 67:250257.CrossRefGoogle Scholar
Milsom, C. V., Simms, M. J., and Gale, A. S. 1994. Phylogeny and paleobiology of Marsupites and Uintacrinus. Palaeontology, 37(3):595607.Google Scholar
Mladenov, P. V. 1983. Rate of arm regeneration and potential causes of arm loss in the feather star Florometra serratissima (Echinodermata: Crinoidea). Canadian Journal of Zoology, 61:28732879.CrossRefGoogle Scholar
Motokawa, T. 1985. Catch connective tissue: the connective tissue with adjustable mechanical properties, p. 6973. In Keegan, B. F. and O'Connor, B. D. S. (eds.), Echinodermata. Proceedings of the Fifth International Conference, Galway. A. A. Balkema, Rotterdam.Google Scholar
Nichols, D. 1960. The histology and activities of the tube feet of Antedon bifida. Quarterly Journal of Microscopial Science, 101:105117.Google Scholar
Nichols, D. 1962. Echinoderms. Hutchinson University Library, London, 192 p.Google Scholar
Oji, T. 1996. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology, 22(3):339351.Google Scholar
Oji, T. 1986. Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, Recent stalked crinoids. Lethaia, 19:355360.Google Scholar
Oji, T. and Okamoto, T. 1994. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology, 20:2739.Google Scholar
Rasmussen, H. W., and Sieverts-Doreck, H. 1978. Articulata, Classification, p. T813T928. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, Kansas, 625 p.Google Scholar
Rideout, J. A., Smith, N. B., and Sutherland, M. D. 1979. Chemical defenses of crinoids by polyketide sulphates. Experientia, 35:12731274.Google Scholar
Rowe, F. W. E., Hoggett, A. K., Birtles, R. A., and Vail, L. L. 1986. Revision of some comasterid genera from Australia (Echinodermata: Crinoidea), with descriptions of two new genera and nine new species. Zoological Journal of the Linnaean Society, 86:197277.Google Scholar
Rubenstein, D. I., and Koehl, M. A. R. 1977. The mechanisms of filter feeding: some theoretical considerations. American Naturalist, 111:981994.Google Scholar
Rutman, J., and Fishelson, L. 1969. Food composition and feeding behavior of shallow-water crinoids at Eilat (Red Sea). Marine Biology, 3:4657.Google Scholar
Shaw, G. D., and Fontaine, A. R. 1990. The locomotion of the comatulid Florometra serratissima (Echinodermata: Crinoidea) and its adaptive significance. Canadian Journal of Zoology, 68:942950.Google Scholar
Schneider, J. A. 1988. Frequency of arm regeneration of comatulid crinoids in relation to life habit, p. 531538. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology. A. A. Balkema, Rotterdam.Google Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids, p. 269284. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Smith, D. F., Meyer, D. L., and Horner, S. M. J. 1981. Amino acid uptake by the comatulid crinoid Cenometra bella (Echinodermata) following evisceration. Marine Biology, 61:207213.Google Scholar
Stevens, T. F. 1989. Species composition and distribution of the comatulid crinoids of Heron Island and Wistari Reefs. , University of Queensland, Brisbane.Google Scholar
Thurman, H. V., and Weber, H. H. 1984. Marine Biology. Merrill, Columbus, Ohio, 446 p.Google Scholar
Vail, L. 1987. Diel patterns of emergence of crinoids (Echinodermata) from within a reef at Lizard Island, Great Barrier Reef, Australia. Marine Biology, 93:551560.Google Scholar
West, B. 1978. Utilisation of dissolved glucose and amino acids by Leptometra phalangium (J. Mull.). Scientific Proceedings of the Royal Dublin Society (Series A), 6:7785.Google Scholar
Wilkie, I. C., and Emson, R. H. 1988. Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny, p. 311330. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford.Google Scholar
Zmarzly, D. L. 1985. The shallow-water crinoid fauna of Kwajalein Atoll, Marshall Islands: ecological observations, interatoll comparisons, and zoogeographic affinities. Pacific Science, 39:340358.Google Scholar